首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations on the susceptibility and resistance of head lettuce (Lactuca sativa) to downy mildew (Bremia lactucae) II. Light and electron microscopic examinations of the host-parasite interface Infected leaves of lettuce varieties susceptible and incompletely resistant to Bremia lactucae were observed by light and electron microscopy. Primary infection structures in the epidermal cells as well as intercellular hyphae with the adjacent haustoria could be seen by differential interference contrast microscopy. The haustoria in host cells of susceptible varieties collapsed before degeneration of the invaded host cell. On the contrary, host cells of incompletely resistant varieties died before the haustoria in these cells showed any sign of degeneration. Electron microscopic investigations confirmed the observations with light microscopy. In incompletely resistant varieties, an electron transparent sheath enveloped the haustorium. In the sheath fragments of membranes are localized. These membrane particles as seen by using the goniometer in electron microscopic work were flat faced. The sheath material consists of transformed host cell wall material and involves fragments of the host plasmalemma as well as fragments of the unit membrane separating the sheath from extrahaustorial matrix. The sheath has an important role as a special filter to prevent the passage of nutrients from the host cell into the haustorium. Thus the incomplete resistance is based not only on an impeded penetration of the parasite into the epidermal cells and their hypersensitive reactions in case of a successful penetration but also on hypersensitivity of mesophyll cells which does not necessarily lead to death of the parasite but does impede the absorption of nutrients.  相似文献   

2.
Summary Intracellular sporozoan parasites invade the host cell through the invagination of the plasma membrane of the host and a vacuole is formed which accommodates the entering parasite. The vacuole may disappear and the invaginated membrane of the host then becomes closely apposed to that of the parasite's own membrane. As a result the parasite is covered by two membranes. Members of the class Piroplasmea differ from other Sporozoa in that their trophozoites are covered by a single membrane. By screening numerous sections of intraerythrocytic Babesia microti belonging to the class Piroplasmea, it was found that merozoites of Babesia enter the erythrocytes of hamsters in the same way as those of other Sporozoa. When a merozoite touches the red blood cell with its anterior end it becomes attached to the membrane of the host, which starts to invaginate and a parasitophorous vacuole is formed. The vacuolar space disappears rapidly and the membrane of the vacuole and that of the parasite become closely adjacent. At this stage the parasite is surrounded by two plasma membranes. The outer membrane derived from the invaginated host membrane disintegrates quickly and the parasite is left with a single membrane throughout its life span.Supported by Grant AI 08989 from the U.S. Public Health Service. The excellent technical assistance of Ms. Renata Klatt is gratefully acknowledged  相似文献   

3.
The plasma membrane of cultured cells of several plant species was observed to possess invaginations, or secondary vacuoles, of variable size in the adjacent cytoplasm. These structures, which occurred in cells at different phases in vacuolation, were very numerous in thin sections of some cells but fewer in others. In vacuolated cells enlarged secondary vacuoles protrude into the primary vacuole but are delimited from the tonoplast by an intermembrane zone of variable width. The plasma membrane at the orifice of an invagination may fuse and detach the secondary vacuole from the membrane to form in the cytoplasm a structure bounded by a single membrane. Complex accumulations of membranes consisting of spherical, tubular, and laminar structures, possibly containing cytoplasm, may develop within secondary vacuoles. Contents of many of these vacuoles arise from folds along its limiting membrane which pinch off into the interior of the secondary vacuole. A fibrous substance, possibly derived from the wall, is present in some secondary vacuoles. Observed folding of the plasma membrane and measurements of membrane width of various organelles and cytomembranes support an interpretation that endocytosis occurs in cultured cells.  相似文献   

4.
Upon host cell invasion the apicomplexan parasite Toxoplasma gondii resides in a specialized compartment termed the parasitophorous vacuole that is derived from the host cell membrane but modified by the parasite. Despite the segregation of the parasitophorous vacuole from the host endocytic network, the intravacuolar parasite has been shown to acquire cholesterol from the host cell. In order to characterize further the role of sterol metabolism in T. gondii biology, we focused our studies on the activity of acyl-CoA:cholesterol acyltransferase (ACAT), a key enzyme for maintaining the intracellular homeostasis of cholesterol through the formation of cholesterol esters. In this study, we demonstrate that ACAT and cholesterol esters play a crucial role in the optimal replication of T. gondii. Moreover, we identified ACAT activity in T. gondii that can be modulated by pharmacological ACAT inhibitors with a consequent detrimental effect on parasite replication.  相似文献   

5.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

6.
Carey KL  Jongco AM  Kim K  Ward GE 《Eukaryotic cell》2004,3(5):1320-1330
Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.  相似文献   

7.
The asexual development of Eimeria contorta from sporozoites to first-generation merozoites in tissue culture was investigated with the electron microscope. Sporozoites with a three-layered pellicle, 26 subpellicular microtubules, a conoid, 4-7 rhoptries, and an abundance of micronemes actively entered host cells and showed direct contact to the host cell's cytoplasm. Shortly after penetration, small vacuoles surrounding the parasite merged into a parasitophorous vacuole. Inside this vacuole, sporozoites assumed a definite U-shape before transformation into schizonts took place. This process was characterised by the occurrence of subpellicular microtubules exclusively in the anterior half of the sporozoite, by a degeneration of the 2 inner pellicular membranes, by an outpocketing of the parasite's surface, and by the arrangement of microtubules in clusters. About 25 merozoites were formed at the surface of mature schizonts, to which they remained attached at their posterior pole. A polar ring was present at that area. Anterior and posterior refractile bodies were conspicuous in merozoites and showed close association with mitochondria. The significance of a fibrillar substructure in rhoptries and micronemes is discussed, and special attention is drawn to the pathway of nutrient transport from host cell mitochondria and dictyosomes through intravacuolar folds, parasitophorous vacuole and crescent body into the parasite's food vacuoles.  相似文献   

8.
SYNOPSIS. Light and electron microscope studies of the "cyst" of Besnoitia jellisoni indicate that it consists of an extracellular wall, a large, sometimes multinucleate, host cell, and an intracellular vacuole containing the parasites. The "cyst" wall has fine fibrils and small dense granules embedded in an election-lucid matrix. The wall may be formed from a secretion of the enclosed host cell. The plasma membrane of the host cell is very irregular, being modified into microvillar or pseudopodial extensions. Small vesicles and invaginations of the plasma membrane indicate mioropinocytosis. The one to several large lobular nuclei lie in a thick area of cytoplasm which is filled with rough endoplasmic reticulum and many mitochondria with lamellar cristae. The parasite-containing vacuole is limited by a vacuolar membrane which has many blebs suggesting a transfer of materials into the vacuole.
The "cyst" organisms are crescentic or piriform and are enclosed by a pellicle consisting of outer and inner membranes. Twenty-two subpellicular fibrils extend longitudinally adjacent to the inner membrane from the anterior polar ring to a posterior ring. A micropyle is situated laterally in the pelliole near the level of the nucleus. A conold and several associated paired organelles are present at the anterior end. Microuemes, more abundant in older organisms, are also present in the anterior portion of the parasite. A Golgi apparatus lies adjacent and anterior to the nucleus. One or more mitochondria with saccular cristae, ovoid glycogen bodies, free ribosomes and occasional vacuoles are also present. Organisms within the "cyst" multiply by endodyogeny.  相似文献   

9.
The intracellular forms of the apicomplexan parasites Plasmodium, Toxoplasma and Eimeria reside within a parasitophorous vacuole. The nutrients required by these intracellular parasites to support their high rate of growth and replication originate from the host cell which, in turn, takes up such compounds from the extracellular milieu. Solutes moving from the external medium to the interior of the parasite, are confronted by a series of three membranes --the host cell membrane, the parasitophorous vacuole membrane and the parasite plasma membrane. Each constitutes a potential permeability barrier which must be either crossed or bypassed. It is the mechanisms by which this occurs that are the subject of this review.  相似文献   

10.
The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block‐face scanning electron microscopy to explore the topography of P. knowlesi‐infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi‐infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python‐based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi‐infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.  相似文献   

11.
Ultrastructural investigations of P. falciparum cultivated in vitro in human erythrocytes revealed new features of the feeding mechanism of the parasite. Mature trophozoites and schizonts take up a portion of the host cytosol by endocytosis which is restricted to cytostomes and which involves the invagination of both parasitophorous and parasite membranes. The resulting endocytic vesicles, surrounded by two concentric membranes, migrate towards the central food vacuole membrane. The external membrane of the endocytic vesicles apposes that of the food vacuole, leading to the internalization of vesicles bounded by a single membrane into the vacuolar space where they are rapidly degraded. We conclude from this sequence of events that endocytic vesicles fuse with the food vacuole. Treatment of infected cells with therapeutic concentrations of chloroquine inhibited the last step of the feeding process, i.e. vacuolar degradation. This was manifested by the accumulation within the vacuolar space of intact vesicles bounded by single membranes. The implications of these findings for the antimalarial activity of chloroquine are discussed.  相似文献   

12.
The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

13.
ABSTRACT The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

14.
SYNOPSIS. The ultrastructure of the known tissue stages of Cryptosporidium wrairi Vetterling, Jervis, Merrill, and Sprinz, 1971 parasitizing the ileum of guinea pigs is described. Young trophozoites are surrounded by 4 unit membranes, the outer 2 of host origin, the inner 2 the pellicle of the parasite. Each trophozoite contains a vesicular nucleus with a large nucleolus. Its cytoplasm contains ribosomes, but eventually fills with cisternae of the rough endoplasmic reticulum. As the trophozoite matures the area of attachment of the parasite to the host cell becomes vacuolated, with vertical membranous folds. It is apparent that the parasite acquires nourishment from the host cell thru this area of attachment. As schizonts develop, (a) multiple nuclei appear, (b) the endoplasmic reticulum enlarges, (c) the attachment zone increases in area, (d) large vacuoles, which develop as endocytotic vesicles in the attachment area, are found in the cytoplasm and (e) the inner unit membrane of the parasite pellicle is resorbed around the sides of the developing schizont. Following nuclear division, merozoites develop from the schizont by budding. Merozoites have an ultrastructure similar to that described for other coccidia except that no mitochondria, micropores, or subpellicular tubules were observed. Merozoites penetrate the epithelial cell causing invagination of the microvillar membrane and lysing it. No unit membrane is formed between the parasite and the host cell. However, the cell produces one or 2 dense bands adjacent to the parasite attachment area. The macrogamete contains a nucleus, endoplasmic reticulum, attachment zone, and large vacuoles. It also contains a variety of granules, some of which are polysaccharide. The immature microgametocyte contains multiple compact nuclei. No mature microgametocytes or zygotes were found.  相似文献   

15.
The fine structure of the developing macrogamete of Eimeria maxima   总被引:1,自引:0,他引:1  
R M Pittilo  S J Ball 《Parasitology》1979,79(2):259-265
The fine structure of the developing macrogamete of Eimeria maxima was studied from chicks killed at intervals from 138 to 147 h after inoculation. The macrogamete developed within a parasitophorous vacuole. Lying within the vacuole and extending for some distance around the periphery of the macrogamete were intravacuolar tubules, grouped in certain areas, and in some cases they were seen to make direct connexions with the cytoplasm of the parasite. During development, electron-pale vesicles were pinched off externally from the surface of the macrogamete. There appeared to be 2 forms of wall-forming bodies of the Type I during development, one form being less osmiophilic than the other. Other organelles present, such as wall-forming bodies of Type II, granular endoplasmic reticulum, mitochondria, canaliculi, lipid inclusions and intravacuolar folds, were similar in structure to those of other Eimeria species.  相似文献   

16.
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.  相似文献   

17.
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.  相似文献   

18.
To survive within erythrocytes, Plasmodium parasites have to put into place different membrane and sub-cellular compartments in order to import different nutrients and to export proteins/antigens. Infected cells pose not only a major world health risk by killing two million people per year, but also a very interesting cell biology problem, as within the erythrocyte the parasite resides inside a vacuole called the parasitophorous vacuole and as a consequence, it is separated from the blood stream by three membrane barriers, its own plasma membrane, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In spite of these three barriers the parasite is capable of secreting antigens and importing nutrients, and to do this, it has developed a complex vesicular system that extends into the red blood cell cytoplasm to the plasma membrane. Understanding how the parasite controls this extensive vesicular traffic has driven research into Plasmodium Rabs, whose potential role is discussed.  相似文献   

19.
OBSERVATIONS ON THE STRUCTURE OF RHODOSPIRILLUM MOLISCHIANUM   总被引:8,自引:2,他引:6       下载免费PDF全文
The lamellae of the bacterium Rhodospirillum molischianum originate as extensions of the cytoplasmic membrane into the cytoplasm of the cell. Initially, these extensions are narrow folds and occur independently of one another. The first lamellae to appear average about 80 A in width, representing one side of the infolded cytoplasmic membrane, or 160 A when the two sides of the fold are closely appressed. The 160-A lamellae increase in number and may associate to form larger lamellae, which represent varying degrees of association between adjacent folds. Later, the space within each fold increases; the two appressed regions of the cytoplasmic membrane in each fold separate to form distinct invaginations, and the lamellae observed at this stage are formed by an association of the sides of adjacent invaginations.  相似文献   

20.
Gruenberg J  van der Goot FG 《Cell》2006,125(2):226-228
In this issue of Cell, Coppens and coworkers (Coppens et al., 2006) describe how Toxoplasma gondii, an obligate intracellular parasite, feeds on the host. Coppens et al. provide evidence that the parasite takes host cell endosomes and lysosomes hostage by sequestering them where the parasite resides, within invaginations of the parasitophorous vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号