首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Norepinephrine ([3H]NE) efflux from preloaded rat hippocampal slices was increased in a dose-dependent manner by excitatory amino acids, with the following order of potencies: N-methyl-D-aspartate (NMDA) greater than kainic acid (KA) greater than L-glutamate greater than or equal to D,L-homocysteate greater than L-aspartate greater than quinolinic acid greater than quisqualic acid. The effect of the excitatory amino acids was blocked by physiological concentrations of Mg2+, with the exception of KA. D,L-2-Amino-7-phosphonoheptanoic acid dose-dependently inhibited the NMDA effect (ID50 = 69 microM), whereas at 1 mM it was ineffective versus KA. The release of [3H]-NE induced by quinolinic acid was blocked by 0.1 mM D,L-2-amino-7-phosphonohepatanoic acid. gamma-D-Glutamylglycine dose-dependently inhibited the KA effect with an ID50 of 1.15 mM. Tetrodotoxin (2 microM) reduced by 40 and 20% the NMDA and KA effects, respectively. The data indicate that [3H]NE release from hippocampal slices can be used as a biochemical marker for pharmacological investigations of excitatory amino acid receptors and their putative agonists and antagonists.  相似文献   

2.
The aim of the present study was to determine whether endogenous amino acids are released from type-1 and type-2 astrocytes following non-N-methyl-D-aspartate (NMDA) receptor activation and whether such release is related to cell swelling. Amino acid levels and release were measured by HPLC in secondary cultures from neonatal rat cortex, highly enriched in type-1 or type-2 astrocytes. The following observations were made. (a) The endogenous level of several amino acids (glutamate, alanine, glutamine, asparagine, taurine, serine, and threonine) was substantially higher in type-1 than in type-2 astrocytes. (b) The spontaneous release of glutamine and taurine was higher in type-1 than in type-2 astrocytes; that of other amino acids was similar. (c) Exposure of type-2 astrocyte cultures to 50 microM kainate or quisqualate doubled the release of glutamate and caused a lower, but significant increase in that of aspartate, glycine, taurine, alanine, serine (only in the case of kainate), and glutamine (only in the case of quisqualate). These effects were reversed by the antagonist CNQX. (d) Exposure of type-1 astrocyte cultures to 50-200 microM kainate or 50 microM quisqualate did not affect endogenous amino acid release, even after treating the cultures with dibutyryl cyclic AMP. (e) Exposure of type-1 or type-2 astrocyte cultures to 50 mM KCl (replacing an equimolar concentration of NaCl) enhanced the release of taurine greater than glutamate greater than aspartate. The effect was somewhat more pronounced in type-2 than in type-1 astrocytes. Veratridine (50 microM) did not cause any increase in amino acid release. (f) The release of amino acids induced by high [K+] appeared to be related to cell swelling, in both type-1 and type-2 astrocytes. Swelling and K(+)-induced release were somewhat higher in type-2 than in type-1 astrocytes. In contrast, neither kainate nor quisqualate caused any appreciable increase in cell volume. It is concluded that non-NMDA receptor agonists stimulate the release of several endogenous amino acids (some of which are neuroactive) from type-2 but not from type-1 astrocytes. The effect does not seem to be related to cell swelling, which causes a different release profile in both type-1 and type-2 astrocytes. The absence of kainate- and quisqualate-evoked release in type-1 astrocytes suggests that the density of non-NMDA receptors in this cell type is very low.  相似文献   

3.
Amino acid release studies were performed by an HPLC procedure using differentiated rat cerebellar granule cell cultures. Kainic acid (KA; 50 microM) caused an increase (about threefold) in the release of endogenous glutamate and a lesser, but statistically significant, increase in the release of glutamine, glycine, threonine, taurine, and alanine. Quisqualic acid (QA) and, to a lesser degree, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (both 50 microM) enhanced the release of the following amino acids in the order glutamate greater than aspartate greater than or equal to taurine, whereas the release of other amino acids was either unaffected or affected in a statistically nonsignificant way. The release of glutamate induced by KA was partially (43%) Ca2+ dependent. The other release-inducing effects of KA and QA were not Ca2+ dependent. In all cases, the evoked release could be prevented by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-2,3-hydroxy-7-nitroquinoxaline, and thus appeared to be receptor mediated. NMDA (5 and 50 microM) had no release-inducing activity. The KA-, QA-, and AMPA-evoked release of newly synthesized [3H]glutamate and [3H]aspartate (formed in the cells exposed to [3H]glutamine) was very similar to the evoked release of endogenous glutamate and aspartate. On the other hand, the release of preloaded D-[3H]aspartate (purified by HPLC in the various fractions analyzed, before radioactivity determination) induced by 50 microM KA was twice as high as that of endogenous glutamate. In the case of high [K+] depolarization, in contrast, the release of preloaded D-[3H]aspartate was approximately 30% lower than that of endogenous glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. The effects of the excitatory amino acid agonists kainate (KA), quisqualate (QUIS), and N-methyl-D-aspartate (NMDA) were studied in vitro on the hemisected frog spinal cord. 2. Prolonged (1.0 hr) application of excitatory amino acid agonists (KA, 50 or 300 microM; QUIS, 30 microM; NMDA, 300 microM) significantly reduced the ventral root potentials (VRPs) and [K+]0 evoked by a dorsal root tetanus (10 sec, 25 Hz), by brief (10 sec) applications of the same agonists (KA, 30 microM; QUIS, 30 microM; NMDA, 300 microM), and by GABA (10 sec, 1.0 mM). 3. The effect was essentially irreversible and persisted despite 2-4 hr of washing. 4. Excitatory amino acid antagonists (APV, 30 microM and kynurenate, 2 mM) blocked the neurotoxic effects of the excitatory agonists NMDA and KA respectively, an observation which indicates the observed effects of the agonists require the activation of specific excitatory receptors. 5. TTX did not alter the neurotoxic effects of KA suggesting that interneuronal firing does not contribute to the observed changes. 6. Addition of high K+ did not duplicate the effect of prolonged excitatory amino acid agonist exposure, an indication that elevation of K+ does not cause the decreased responses. 7. Light microscopy did not provide any evidence of gross tissue damage. 8. The parallel reduction of postsynaptic responses and delta [K+]0 support the idea that elevation of extracellular [K+] by afferent stimuli results from interneuronal activity.  相似文献   

5.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

6.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

7.
Abstract: The extracellular concentrations of amino acids in the hippocampal CA1 field and striatum of conscious freely moving rats were monitored simultaneously by in vivo brain microdialysis using HPLC with electrochemical detection. Under basal conditions, aspartate, glutamate, glutamine, glycine, taurine, and alanine were detected, but γ-aminobutyric acid was undetectable in both regions. In-traperitoneal injection of N -methyl- d -aspartic acid (NMDA; 10 mg/kg) caused a significant increase (three-to fivefold) in the taurine concentration in the dialysate obtained from both the hippocampal CA1 and striatum, whereas other amino acids (aspartate, glutamate, and alanine) did not show significant changes. Local application of NMDA (300 γ) to both regions via the dialysis probes also caused a similar increase (three-to fivefold) in both regions. Under infusion of hypertonic Ringer's solution containing 150 m M sucrose, the effect of NMDA on the level of taurine in both the regional dialysates was not affected. The effect of NMDA was totally reduced by intraperitoneal administration of MK-801 (0.3–1.0 mg/kg), a noncompetitive antagonist of NMDA receptors. Continuous infusion of dl -2-amino-5-phosphonovaleric acid (1.0 mM), a competitive antagonist of NMDA receptors, via the dialysis probes completely inhibited the effect of NMDA. These findings suggest that systemic administration of NMDA is effective as well as local administration into the brain and that NMDA receptors might be involved in the regulation of the extracellular taurine level in the brain without dependence on cell swelling.  相似文献   

8.
Wang JT  Douglas AE 《Plant physiology》1997,114(2):631-636
Exogenous concentrations of 10 [mu]M to 1 mM of the nonprotein amino acid taurine stimulated photosynthate release from the dinoflagellate alga Symbiodinium, which had been freshly isolated from the sea anemone Aiptasia pulchella. Photosynthate release, as induced by taurine and animal extract, was metabolically equivalent at both concentrations in that they (a) stimulated photosynthate release to the same extent and (b) induced the selective release of photosynthetically derived organic acids. A complex mixture of amino acids at 75 mM also promoted photosynthate release, but the release rate was reduced by 34% after the omission of taurine (3 mM) from the mixture, suggesting that much of the effect of amino acids was largely attributable to taurine. Exogenous 14C-labeled taurine was taken up by the cells, and more than 95% of the internalized 14C was recovered as taurine, indicating that taurine-induced photosynthate release was not dependent on taurine metabolism. Both taurine uptake and taurine-induced photosynthate release by Symbiodinium exhibited saturation kinetics, but with significantly different Km values of 68 and 21 [mu]M, respectively. The difference in Km values is compatible with the hypothesis that Symbiodinium has a taurine signal transducer that is responsible for photosynthate release and is distinct from the taurine transporter.  相似文献   

9.
The glutamate analogues N-methyl-D-aspartate (NMDA), kainic acid (KA), and quisqualic acid (QA), prepared in different hypertonic media, were perfused in vivo in the hippocampal CA1 field of rats using a microdialysis technique. Extracellular taurine levels, estimated after analysis of the taurine content of dialysates, increased during perfusion of all three agonists but varied according to the osmolarity of the medium. The NMDA-induced increase in extracellular taurine content was only slightly inhibited by perfusion of 150 and 300 mM sucrose. The KA-evoked increase was partially dependent on extracellular osmolarity, because addition of 50 and 150 mM sucrose caused a dose-dependent inhibition that was not augmented using higher sucrose concentrations. QA caused a taurine increase that was totally abolished by addition of 50 mM sucrose. These results indicate that the rise in extracellular taurine level elicited by QA and part of the increase elicited by KA are probably due to a release caused by the cellular swelling that these substances evoke, a finding substantiating the previously proposed osmoregulatory role of taurine. However, almost all the increase in extracellular taurine content caused by NMDA and all the osmotically insensitive part of the KA-evoked rise cannot be explained as release triggered by cell swelling and may reflect a function of taurine other than osmoregulation.  相似文献   

10.
The effects of palmitate on intracellular and extracellular amino acid concentrations of cultured astrocytes was studied. Exposure of astrocytes to either 0.72 mM or 0.36 mM palmitate was associated with a significant reduction in the intracellular pool of glutamine and taurine. In contrast, the intracellular concentration of histidine, glycine, citrulline, isoleucine and leucine were increased in the presence of 0.72 mM palmitate. Comparable changes in the extracellular amino acid pool were not observed. The data suggest that palmitic acid, which accumulates in the brain during periods of anoxia, alters the metabolism of several amino acids in cultured astrocytes. These changes may be of significance in terms of the pathophysiology of a stress such as anoxia.Special issue dedicated to Dr. Elling Kvamme  相似文献   

11.
Using cultured cerebral cortical neurons at mature stages (9 days in culture, d.i.c.) it was demonstrated that glutamate, NMDA (N-methyl-D-aspartate) and to a lesser extent KA (kainate) increase the intracellular cGMP concentration ([cGMP]i) whereas no such effect was observed after exposure of the cells of QA (quisqualate) and AMPA (2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate). No effect of glutamate, NMDA and KA was observed in immature neurons (2 d.i.c.). The pharmacology of these cGMP responses was investigated using the glutamate antagonists APV (2-amino-5-phosphonovalerate) with selectivity for NMDA receptors, CNQX (6-cyano-7-nitro-quinoxaline-2,3-dione) with selectivity for non-NMDA receptors and the novel KA selective antagonists AMOA (2-amino-3-[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propionate) and AMNH (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate). In addition, the cytotoxicity of glutamate, NMDA and KA was studied and found to be enhanced by addition of the non-metabolizable cGMP analogue 8-Br-cGMP. On the contrary, the toxicity of QA and AMPA was not affected by 8-Br-cGMP. Pertussis toxin augmented the toxicity elicited by glutamate, NMDA, KA and QA but not that induced by AMPA. On the other hand, only glutamate and KA induced toxicity was potentiated by cholera toxin, which also enhanced the stimulatory effect of glutamate and NMDA but not that of KA on the cellular cGMP content. The toxicity as well as the effects on intracellular cGMP levels could be antagonized by the specific excitatory amino acid (EAA) antagonists. These results suggest that the mechanisms by which the various excitatory amino acids exert cytotoxicity are different, and that increased cGMP levels may participate in the mediation of glutamate, NMDA or KA induced toxicity but less likely in QA and AMPA mediated toxicity. Furthermore, G-proteins or other pertussis or cholera toxin sensitive entities seem to be involved in the cytotoxic action of all excitatory amino acids except AMPA.  相似文献   

12.
Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 μM) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV (1–10 μM) enhanced capsaicin-evoked substance P release about 100%. This facilitatory effect was blocked by 0.3 μM MK-801, a selective NMDA receptor antagonist. The metabotropic glutamate receptor agonists L-AP4 (group III) and DHPG (group I) (30–100 μM) inhibited capsaicin-evoked substance P release by approximately 60%. These inhibitory effects were blocked by the selective metabotropic glutamate receptor antagonist (±)-MCPG (5 μM). On the other hand, AMPA and kainate (0.1–10 μM), did not significantly affect capsaicin-evoked substance P release. Thus, substance P release from non-myelinated primary afferents, and possibly nociception, may be under the functional antagonistic control of some metabotropic and ionotropic glutamate receptor subtypes.  相似文献   

13.
The cytotoxicity of the glutamate receptor agonists, N-methyl- -aspartate (NMDA), kainate (KA) and (RS)--amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) on cultured cerebral cortex neurones was monitored as a function of exposure time and concentration by following the release into the culture medium of the cytoplasmic enzyme lactate dehydrogenase from the neurones. Chronic exposure of the cells to different concentrations of the agonists showed that AMPA was the most potent excitotoxin (ED50 10 μM) followed in potency by NMDA (ED50 65 μM) and KA (ED50 100 μM). Experiments in which the neurones were exposed for different periods of time to fixed concentrations of the agonists showed that after short exposure times (1–3 min) cells survived for more than 24 h after removal of the agonists but after longer exposure times (5–10 min) cells survived for time periods ranging from 25 min to 6 h depending upon the exposure time and the nature of the agonist. The results of the latter experiments indicate that even short exposure times trigger processes in the cell membranes which even after removal of the excitotoxin will lead to neuronal death.  相似文献   

14.
N-Acetylaspartate (NAA) is a largely neuron specific dianionic amino acid present in high concentration in vertebrate brain. Many fundamental questions concerning N-acetylaspartate in brain remain unanswered. One such issue is the predominantly neuronal synthesis and largely glial catabolism which implies the existence of a regulated efflux from neurons. Here we show that transient (5 min) NMDA-receptor activation (60 μM) induces a long lasting Ca2+-dependent efflux of N-acetylaspartate from organotypic slices of rat hippocampus. The NMDA-receptor stimulated efflux was unaffected by hyper-osmotic conditions (120 mM sucrose) and no efflux of N-acetylaspartate was evoked by high K+-depolarization (50 mM) or kainate (300 μM). These results indicate that the efflux induced by NMDA is not related directly to either cell swelling or depolarization but is coupled to Ca2+-influx via the NMDA-receptor. The efflux of N-acetylaspartate persisted at least 20 min after the omission of NMDA, similar to the efflux of the organic anions glutathione and phosphoethanolamine. The efflux of taurine and hypotaurine was also stimulated by NMDA but returned more quickly to basal levels. The NMDA-receptor stimulated efflux of N-acetylaspartate, glutathione, phosphoethanolamine, taurine and hypotaurine correlated with delayed nerve cell death measured 24 h after the transient NMDA-receptor stimulation. However, exogenous administration of high concentrations of N-acetylaspartate to the culture medium was non-toxic. The results suggest that Ca2+-influx via the NMDA-receptor regulates the efflux of N-acetylaspartate from neurons which may have both physiological and pathological importance.  相似文献   

15.
The effect of local administration of kainic acid in the rabbit hippocampus was studied; the hippocampus was perfused continuously in the freely moving animal with an implanted 0.3-mm dialysis fiber. The pattern of endogenous amino acids in the perfusate, reflecting extracellular amino acids, was monitored with liquid chromatography separation and fluorimetric detection of amino acid derivatives. Kainic acid was included in the perfusion medium for up to 70 min at 0.1-1.0 mM and, with time, induced epileptiform activity. Endogenous glutamic acid, taurine, and phosphoethanolamine levels were increased selectively at the lower perfusion concentrations of kainic acid. Long perfusion periods with higher concentrations increased the levels of virtually all amino acids. Perfusion of the hippocampus with depolarizing concentrations of potassium gave an amino acid response partly similar to that seen with kainic acid treatment. However, one notable difference between the two responses was that the extracellular concentration of glutamine, although not influenced by kainic acid, was significantly decreased after high potassium concentrations. These results confirm previous notions that kainic acid has a primarily excitatory effect, one manifestation of this effect being the release of glutamic acid.  相似文献   

16.
The uptake of the neuroactive sulphur amino acids -cysteine sulphinate, -cysteate, -homocysteine sulphinate and -homocysteate was investigated in astrocytes cultured from the prefrontal cortex; in neurons, cultured from cerebral cortex; and, in granule cells, cultured from cerebellum. It was shown that each amino acid acted as a substrate for a plasma membrane transporter in both neurons and astrocytes. Astrocytes and neurons exhibited a high-affinity uptake for -cysteine sulphinate and -cysteate with Km values ranging from 14–100 μM, and a low-affinity uptake for -homocysteine sulphinate and -homocysteate, with Km values ranging from 225–1210 μM. The uptake of all transmitter candidates studied was partially sodium-dependent. This sodium-dependency was most evident at low (< 100 μM) concentrations of each substrate. The apparent uptake measured in the absence of sodium was included as a component in corrections made for non-saturable influx. With the exception of -cysteine sulphinate, uptake of each sulphur amino acid was greatest in astrocytes, with Vmax values ranging between 15–32 nmol min−1 mg−1 cell protein. Moreover, the uptake of each sulphur amino acid in cerebellar granule cells (Vmax values ranging between 10–25 nmol min−1 mg−1 cell protein) was consistently greater than that in cerebral cortex neurons (Vmax values ranging between 1.5–6 nmol min−1 mg−1 cell protein).  相似文献   

17.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

18.
Glutamine release from astrocytes is an essential part of the glutamate-glutamine cycle in the brain. Uptake of glutamine into cultured rat astrocytes occurs by at least four different routes. In agreement with earlier studies, a significant contribution of amino acid transport systems ASC, A, L, and N was detected. It has not been determined whether these systems are also involved in glutamine efflux or whether specific efflux transporters exist. We show here that ASCT2, a variant of transport system ASC, is strongly expressed in rat astroglia-rich primary cultures but not in neuron-rich primary cultures. The amino acid sequence of rat astroglial ASCT2 is 83% identical to that of mouse ASCT2. In Xenopus laevis oocytes expressing rat ASCT2, we observed high-affinity uptake of [U-14C]glutamine (Km = 70 microM) that was Na(+)-dependent, concentrative, and unaffected by membrane depolarization. When oocytes were preloaded with [U-14C]glutamine, no glutamine efflux was detected in the absence of extracellular amino acids. Neither lowering intracellular pH nor raising the temperature elicited efflux. However, addition of 0.1 mM unlabeled alanine, serine, cysteine, threonine, glutamine, or leucine to the extracellular solution resulted in a rapid release of glutamine from the ASCT2-expressing oocytes. Amino acids that are not recognized as substrates by ASCT2 were ineffective in this role. Extracellular glutamate stimulated glutamine release weakly at pH 7.5 but was more effective on lowering pH to 5.5, consistent with the pH dependence of ASCT2 affinity for glutamate. Our findings suggest a significant role of ASCT2 in glutamine efflux from astrocytes by obligatory exchange with extracellular amino acids. However, the relative contribution of this pathway to glutamine release from cells in vivo or in vitro remains to be determined.  相似文献   

19.
Kainic acid, a powerful neuroexcitant and neurotoxin, stimulates the release of naturally occurring excitatory amino acids, l-glutamate and l-aspartate, from hippocampal synaptosomes. The release stimulation affects in a similar way both the general pool of the two amino acids and the fraction of l-glutamate and l-aspartate, newly-synthetized from precursors or recently accumulated through the high-affinity uptake mechanism. Kainic acid exerts its stimulatory action on the basal release of the two amino acids as well as on the high K+-stimulated release of l-glutamate. Kainic acid has, however, different effects on the release of exogenously accumulated [d-3H]aspartate. In particular, the high K+-stimulated release of this false transmitter is strongly inhibited by 1 mM kainic acid. The present data confirm the presynaptic action of kainic acid on the general as well as on the recently-formed pools of naturally occurring excitatory amino acids. At the same time, our results suggest that [d-3H]aspartate is not a reliable substitute for l-glutamate and l-aspartate, in release studies and that the radioactivity released after preloading with [d-3H]aspartate does not necessarily reflect the release of naturally occurring excitatory amino acids.  相似文献   

20.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号