首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The claret (ca) locus in Drosophila encodes a kinesin-related motor molecule that is required for proper distribution of chromosomes in meiosis in females and in the early mitotic divisions of the embryo. Here we demonstrate that a mutant allele of claret non-disjunctional (ca(nd)), non-claret disjunctional Dominant (ncdD), causes abnormalities in meiotic chromosome segregation, but is near wild-type with respect to early mitotic chromosome segregation. DNA sequence analysis of this mutant allele reveals two missense mutations compared with the predicted wild-type protein. One mutation lies in a proposed microtubule binding region of the motor domain and affects an amino acid residue that is conserved in all kinesin-related proteins reported to date. This region of the motor domain can be used to distinguish meiotic and mitotic motor function, defining an amino acid sequence criterion for classifying motors according to function. ncdD's mutant meiotic effect, but near wild-type mitotic effect, suggests that interactions of the ca motor protein with spindle microtubules differ in meiosis and mitosis.  相似文献   

2.
Yeast Mer1 Mutants Display Reduced Levels of Meiotic Recombination   总被引:17,自引:2,他引:15       下载免费PDF全文
J. Engebrecht  G. S. Roeder 《Genetics》1989,121(2):237-247
Mutations at the MER1 locus were identified in a search for meiotic mutants defective in chromosome segregation. mer1 strains show decreased levels of inter- and intrachromosomal meiotic recombination and produce inviable spores. The MER1 gene was cloned by complementation of the spore inviability phenotype. Strains carrying disruptions of the MER1 gene are mitotically viable. The epistatic relationships between MER1 and previously characterized meiotic genes are described.  相似文献   

3.
By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature.  相似文献   

4.
M. Molnar  J. Bahler  M. Sipiczki    J. Kohli 《Genetics》1995,141(1):61-73
The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.  相似文献   

5.
R Waugh  D H Boxer 《Biochimie》1986,68(1):157-166
Anaerobic growth in the presence of 0.6 mM NiCl2 was able to restore hydrogenase and benzyl-viologen-linked formate dehydrogenase activities to a mutant (FD12), which is normally defective in these activities. This mutant carries a mutation located near minute 58 in the genome. Hydrogenase isoenzyme I and II activities were restored along with the hydrogenase activity that forms part of the formate hydrogen lyase system. A plasmid (pRW1) was constructed, containing a 4.8 kb chromosomal DNA insert, which was able to complement the lesion in mutant FD12. Further mutants with mutations near 58 minutes on the chromosome, and which lacked hydrogenase and formate dehydrogenase activities were isolated. These mutants were divided into three groups. Class I mutants were restored to the wild-type phenotype either by growth with 0.6 mM NiCl2 or following transformation with pRW1. Class II mutants were also complemented by pRW1 but were unaffected by growth with NiCl2. Class III mutants were unaffected by both pRW1 and growth with NiCl2. The cloned 4.8 kb fragment of chromosomal DNA therefore encodes two genes essential for hydrogenase activity. Restriction analysis indicates that the cloned DNA is the same as a fragment that has previously been cloned and which complements the hydB locus (Sankar et al. (1985) J. Bacteriol., 162, 353-360). None of the three classes of mutants possess mutations in hydrogenase structural genes.  相似文献   

6.
Baker BS  Carpenter AT  Ripoll P 《Genetics》1978,90(3):531-578
To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability.  相似文献   

7.
The 2B5 region on the X chromosome of Drosophila melanogaster forms an early ecdysone puff at the end of the third instar. The region is coextensive with a complex genetic locus, the Broad-Complex (BR-C). The BR-C is a regulatory gene that contains two major functional domains, the br domain and the l(1)2Bc domain. BR-C mutants prevent metamorphosis, including morphogenesis of imaginal discs; br mutants prevent elongation and eversion of appendages and l(1)2Bc mutants prevent fusion of the discs. The Stubble-stubbloid (Sb-sbd) locus at 89B9-10 is best known for the effects of its mutants on bristle structure. Mutants of the BR-C and the Sb-sbd locus interact to produce severe malformation of appendages. Viable heteroallelic and homoallelic combinations of Sb-sbd mutants, including loss-of-function mutants, affect the elongation of imaginal disc appendages. Thus, the Sb-sbd(+) product is essential for normal appendage elongation. Sb-sbd mutants, however, do not affect eversion or fusion of discs. Correspondingly, only BR-C mutants deficient in br function interact with Sb-sbd mutants. The interaction occurs in deficiency heterozygotes using single, wild-type doses of the BR-C, of the Sb-sbd locus, or of both loci. These last results are formally consistent with the possibility that the BR-C acts as a positive regulator of the Sb-sbd locus. The data do not exclude other possible nonregulatory interactions between the two loci, e.g., interactions between the products of both genes.  相似文献   

8.
9.
Me14, a Yeast Gene Required for Meiotic Recombination   总被引:5,自引:5,他引:0       下载免费PDF全文
T. M. Menees  G. S. Roeder 《Genetics》1989,123(4):675-682
Mutants at the MEI4 locus were detected in a search for mutants defective in meiotic gene conversion. mei4 mutants exhibit decreased sporulation and produce inviable spores. The spore inviability phenotype is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The MEI4 gene has been cloned from a yeast genomic library by complementation of the recombination defect and has been mapped to chromosome V near gln3. Strains carrying a deletion/insertion mutation of the MEI4 gene display no meiotically induced gene conversion but normal mitotic conversion frequencies. Both meiotic interchromosomal and intrachromosomal crossing over are completely abolished in mei4 strains. The mei4 mutation is able to rescue the spore-inviability phenotype of spo13 and 52 strains (i.e., mei4 spo13 rad52 mutants produce viable spores), indicating that MEI4 acts before RAD52 in the meiotic recombination pathway.  相似文献   

10.
B. Rockmill  S. Fogel 《Genetics》1988,119(2):261-272
Mutants at a newly identified locus, DIS1 (disjunction), were detected by screening for mutants that generate aneuploid spores (chromosome VIII disomes) at an increased frequency. Strains carrying the partially dominant alleles, DIS1-1 or DIS1-2, generate disomes at rates up to 100 times the background level. Mitotic nondisjunction is also increased 10- to 50-fold over background. Half-tetrad analysis of disomes for a marked interval on chromosome VIII yields wild-type map distances, indicating that a general recombination deficiency is not the cause of nondisjunction. Meiotic nondisjunction in DIS1 mutants is not chromosome specific; 5% of the spores disomic for chromosome VIII are also disomic for chromosome III. Although only one disomic spore is found per exceptional ascus most of the disomes appear to be generated in the first meiotic division because recovered chromosome VIII disomes contain mostly nonsister chromosomes. We propose that disome generation in the DIS1 mutants results from precocious separation of sister centromeres.  相似文献   

11.
Molecular analysis of the yellow locus of Drosophila   总被引:18,自引:4,他引:14       下载免费PDF全文
  相似文献   

12.
The spp81/ded1 mutations were isolated as suppressors of a Saccharomyces cerevisiae pre-mRNA splicing mutation, prp8-1. The SPP81/DED1 gene encodes a putative ATP-dependent RNA helicase. While attempting to clone the wild-type SPP81/DED1 gene we isolated plasmids which were able to suppress the cold-sensitive growth defect of spp81 mutants. These plasmids encoded a gene (named DBP1) which mapped to chromosome XVI and not to the SPP81/DED1 locus on chromosome XV. The cloned gene suppressed the defect of spp81/ded1 mutants when present on both high and low copy-number plasmids but complemented spp81/ded1 null mutants only when present on high copy-number plasmids. In contrast to the SPP81/DED1 gene the DBP1 gene was not essential for cell viability. The nucleotide sequence of the DBP1 gene revealed that it also encoded a putative ATP-dependent RNA helicase which showed considerable similarity at the amino acid level to the SPP81/DED1 protein.  相似文献   

13.
The spindle is essential for chromosome segregation during meiosis, but the molecular mechanism of meiotic spindle organization in higher plants is still not well understood. Here, we report on the identification and characterization of a plant-specific protein, MULTIPOLAR SPINDLE 1 (MPS1), which is involved in spindle organization in meiocytes of Arabidopsis thaliana . The homozygous mps1 mutant exhibits male and female sterility. Light microscopy showed that mps1 mutants produced multiple uneven spores during anther development, most of which aborted in later stages. Cytological analysis showed that chromosome segregation was abnormal in mps1 meiocytes. Immunolocalization showed unequal bipolar or multipolar spindles in mps1 meiocytes, which indicated that aberrant spindles resulted in disordered chromosome segregation. MPS1 encodes a 377-amino-acid protein with putative coiled-coil motifs. In situ hybridization analysis showed that MPS1 is strongly expressed in meiocytes.  相似文献   

14.
L. Timmons  A. Shearn 《Genetics》1996,144(4):1589-1600
Filamentous fungi are capable of hyphal fusion, but heterokaryon formation between different isolates is controlled by specific loci termed het loci. Heterokaryotic cells formed between strains of different het genotype are rapidly destroyed or strongly inhibited in their growth. In Neurospora crassa, at least 11 loci, including the mating type locus, affect the capacity to form a heterokaryon between different isolates. In this report, we describe the molecular characterization of the vegetative incompatibility locus, het-C. The het-C(OR) allele was cloned by genetically identifying the het-C locus in a chromosome walk, and the activity of clones containing the het-C(OR) allele was tested in a functional transformation assay. The het-C(OR) allele encodes a 966-amino acid polypeptide with a putative signal peptide, a coiled-coil motif and a C-terminal glycine-rich domain, similar to glycine-rich domains detected in various extracellular and structural cell envelope proteins. Both the coiled-coil and one-third of the glycine-rich carboxyl terminal domains were required for full het-C(OR) activity. Mutants of het-C(OR) were obtained by repeat-induced point mutation (RIP); these mutants were indistinguishable from wild type during vegetative growth and sexual reproduction but displayed dual compatibility with both of two mutually incompatible het-C(OR) and het-c(PA) strains.  相似文献   

15.
Saccharomyces cerevisiae top2 mutants deficient in topoisomerase II activity are defective in chromosome segregation during both mitotic and meiotic cell divisions. To identify proteins that act in concert with topoisomerase II during chromosome segregation in S.cerevisiae, we have used a two-hybrid cloning approach. We report the isolation of the PAT1 gene (for protein associated with topoisomerase II), which encodes a novel 90 kDa proline- and glutamine-rich protein that interacts with a highly conserved, leucine-rich region of topoisomerase II in vivo. Strains lacking Pat1p exhibit a slow growth rate and a phenotype reminiscent of conditional top2 mutants grown at the semi-permissive temperature; most notably, a reduced fidelity of chromosome segregation during both mitosis and meiosis. These findings indicate that the PAT1 gene is necessary for accurate chromosome transmission during cell division in eukaryotic cells and suggest that the interaction of Pat1p and topoisomerase II is an important component of this function.  相似文献   

16.
Cohesins are a group of conserved proteins responsible for cohesion between replicated sister chromatids during mitosis and meiosis and which are implicated in double-strand break repair and meiotic recombination. We describe here the identification and characterisation of an Arabidopsis gene - DETERMINATE, INFERTILE1 (DIF1), which is a homolog of the Schizosaccharomyces pombe REC8/RAD21 cohesin genes, and is essential for meiotic chromosome segregation. Five independent alleles of the DIF1 gene were isolated by transposon mutagenesis, and the mutants show complete male and female sterility. Pollen mother cells (PMCs) of dif1 mutants show multiple meiotic defects which are represented by univalent chromosomes and chromosome fragmentation at metaphase I, and acentric fragments and chromatin bridges in meiosis I and II. Consequently, chromosome segregation is strongly affected, resulting in meiotic products of uneven size, shape and of variable ploidy. The similarities in phenotype, and the sequence homology between DIF1 and the REC8/RAD21 cohesins suggests that cohesin function is largely conserved between eukaryotes and highlights the essential role cohesins play in plant meiosis.  相似文献   

17.
Stapleton W  Das S  McKee BD 《Chromosoma》2001,110(3):228-240
The homeless gene of Drosophila melanogaster encodes a member of the DE-H family of ATPase and RNA helicase proteins. Loss-of-function homeless mutations were previously found to cause female sterility with numerous defects in oogenesis, including improper formation of both the anterior-posterior and dorsal-ventral axes and failure to transport and localize key RNAs required for axis formation. One homeless mutation was also found to affect male meiosis, causing elevated X-Y nondisjunction. Here we further analyze the role of homeless in male meiosis. We show that homeless mutations cause a variety of defects in male meiosis including nondisjunction of the X-Y and 2-2 pair, Y chromosome marker loss, meiotic drive, chromosome fragmentation, chromatin bridges at anaphase, and tripolar meiosis. In addition, homeless mutations interact with an X chromosomal factor to cause complete male sterility. These phenotypes are similar to those caused by deletion of the Suppressor of Stellate [Su(Ste)] locus. Like Su(Ste) deficiencies, homeless mutants also exhibit crystals in primary spermatocytes and derepression of the X-linked Stellate locus. To determine whether the regulatory role of hls is specific for Stellate or includes other repeated sequences as well, we compared testis RNA levels for nine transposable elements and found that all but one, copia, were expressed at the same levels in hls mutants and wild type. Copia, however, was strongly derepressed in hls mutant males. We conclude that hls functions along with Su(Ste) and other recently described genes to repress the Stellate locus in spermatocytes, and that it may also play a role in repressing certain other repeated sequences.  相似文献   

18.
The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.  相似文献   

19.
20.
The regular segregation of achiasmate chromosomes in Drosophila melanogaster females is ensured by two distinct segregational systems. The segregation of achiasmate homologs is assured by the maintenance of heterochromatic pairing; while the segregation of heterologous chromosomes is ensured by a separate mechanism that may not require physical association. Axs(D) (Aberrant X segregation) is a dominant mutation that specifically impairs the segregation of achiasmate homologs; heterologous achiasmate segregations are not affected. As a result, achiasmate homologs frequently participate in heterologous segregations at meiosis I. We report the isolation of two intragenic revertants of the Axs(D) mutation (Axs(r2) and Axs(r3)) that exhibit a recessive meiotic phenotype identical to that observed in Axs(D)/Axs(D) females. A third revertant (Axs(r1)) exhibits no meiotic phenotype as a homozygote, but a meiotic defect is observed in Axs(r1)/Axs(r2) females. Therefore mutations at the Axs(D) locus define a gene necessary and specific for homologous achiasmate segregation during meiosis. We also characterize the interactions of mutations at the Axs locus with two other meiotic mutations (ald and ncd). Finally, we propose a model in which Axs(+) is required for the normal separation of paired achiasmate homologs. In the absence of Axs(+) function, the homologs are often unable to separate from each other and behave as a single segregational unit that is free to segregate from heterologous chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号