首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

2.
The aim of this study was to identify and purify the Na+-H+ exchanger from rabbit renal brush border membranes by use of affinity chromatography. Triton-solubilized membranes were equilibrated with an affinity matrix consisting of the amiloride analogue A35 (5-N-(3-aminophenyl)amiloride) covalently coupled to Sepharose CL-4B beads through a triglycine spacer arm. The matrix was then washed extensively with buffer and sequentially eluted with buffer, buffer containing 5 mM amiloride, and 1% sodium dodecyl sulfate (SDS). Eluates were concentrated and subjected to SDS-polyacrylamide gel electrophoresis. The silver-stained gel revealed a 25-kDa protein that was not visible in the initial solubilized brush border membrane extract, was not eluted from the affinity matrix by buffer alone, but was eluted with 5 mM amiloride. A subsequent elution with 1% SDS did not release any more of the 25-kDa protein, indicating that it had been completely eluted from the affinity matrix by amiloride. The presence of 5 mM amiloride during equilibration of the solubilized brush border extract with the affinity matrix completely blocked adsorption of the 25-kDa protein. The relative abundance of this protein correlated closely with Na+-H+ exchange activity when preparations of cortical brush border membrane vesicles, outer medullary brush border membrane vesicles, and cortical basolateral membrane vesicles were compared. Moreover, binding of the protein to the affinity matrix was inhibited by amiloride and amiloride analogues with a rank order identical to that for inhibition of Na+-H+ exchange activity. These findings strongly suggest that the 25-kDa protein is a structural component of the Na+-H+ exchanger.  相似文献   

3.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

4.
Apical plasma membrane vesicles were prepared from human organ donor colon mucosal scrapings. These vesicles were enriched 10-fold in cysteine-sensitive alkaline phosphatase activity compared to starting homogenates, and showed minimal contamination of microsomal, mitochondrial or basolateral membranes. Transport studies using [22Na] uptake into proximal colonic vesicles demonstrated Na+ and H+ conductances, Na+/H+ exchange and amiloride inhibition of Na+ uptake. The isolation of these apical vesicles will permit detailed study of human colonic transport processes.  相似文献   

5.
ATP-dependent trapping of [14C]methylamine was demonstrated in vesicles selectively derived from the sinusoidal plasma membrane of rat hepatocytes; activity was lacking in vesicles prepared from the canalicular domain of the plasma membrane of rat hepatocytes. The proton movement was inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, strophanthidin, vanadate, amiloride, and absence of sodium. 22Na efflux from sinusoidal membrane vesicles increased inversely to extravesicular pH. The results indicate that the sinusoidal plasma membrane of rat hepatocytes contains a Na+/H+ antiport.  相似文献   

6.
The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive 86Rb uptake and amiloride-sensitive 24Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na+/H+ and Na+/K+ exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na+/H+ activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na+/H+ exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA-pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 min. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na+ pump, Na+/H+ exchange) without eliciting corresponding regulatory mechanisms (Na+ stat, pH stat).  相似文献   

7.
The interaction of amiloride and several amiloride derivatives with the Na+/H+ exchange system in Madin-Darby canine kidney cells and in rabbit renal microvillus membrane vesicles was studied from 22Na+ uptake experiments. On both types of preparation, the order of potency of the different molecules tested is: ethylisopropylamiloride greater than ethylpropylamiloride (EPA) greater than amiloride greater than benzamil. 3H-labelled EPA was prepared and used to titrate amiloride binding sites in solubilized microvillus membranes. Kinetics experiments, equilibrium binding studies and competition experiments between [3H]EPA and unlabelled EPA indicate that EPA recognizes a single family of binding sites with a Kd value of 45 nM and a maximum binding capacity of 2 pmol/mg of protein. The order of potency of different amiloride analogs tested in [3H]EPA competition experiments is identical to that found for the inhibition of 22Na+ uptake by the Na+/H+ exchange system, suggesting that [3H]EPA binding sites are associated with the Na+/H+ exchange system. [3H]EPA binding sites are pharmacologically distinct from those of [3H]benzamil and [3H]bumetanide in kidney membranes.  相似文献   

8.
Earlier studies by our laboratory have suggested a relationship between an amiloride-sensitive Na+-H+ exchange process and the physical state of the lipids of rat colonic brush-border membrane vesicles. To further assess this possible relationship, a series of experiments were performed to examine the effect of dexamethasone administration (100 micrograms/100 g body wt. per day) subcutaneously for 4 days on Na+-H+ exchange, lipid composition and lipid fluidity of rat distal colonic brush-border membrane vesicles. The results of these studies demonstrate that dexamethasone treatment significantly: (1) increased the Vmax of the Na+-H+ exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange. 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across dexamethasone-treated brush-border membrane vesicles; (2) increased the lipid fluidity of treated-membrane vesicles compared to their control counterparts, as assessed by steady-state fluorescence polarization techniques using three different lipid-soluble fluorophores; and (3) increased the phospholipid content of treated-membrane vesicles thereby, decreasing the cholesterol/phospholipid molar ratio of treated compared to control preparations. This data, therefore, demonstrates that dexamethasone administration can modulate amiloride-sensitive Na+-H+ exchange in rat colonic distal brush-border membrane vesicles. Moreover, it adds support to the contention that a direct relationship exists between Na+-H+ exchange activity and the physical state of the lipids of rat colonic apical plasma membranes.  相似文献   

9.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

10.
Sodium/Proton Exchange in Cultured Bovine Adrenal Medullary Cells   总被引:2,自引:1,他引:1  
We investigated the presence of Na+/H+ exchange in cultured bovine adrenal medullary cells. The intracellular pH in control cells measured by 5,5-dimethyl[2-14C]oxazolidine-2,4-dione was 7.13 +/- 0.02 (n = 6). Removal of Na+ from the incubation medium shifted the intracellular pH down to 6.67 +/- 0.12 (n = 6). Reintroduction of Na+ to the medium caused a rapid recovery in intracellular pH to 7.20-7.30 that was associated with an increase in uptake of 22Na+ by the cells. Both increases in intracellular pH and uptake of 22Na+ were inhibited by amiloride, an inhibitor of Na+/H+ exchange. The recovery of intracellular pH by addition of Na+ was partially inhibited by quinidine, another inhibitor of Na+/H+ exchange, but not by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an anion-exchange (Cl-/HCO3-) inhibitor. Li+ could substitute for Na+ in the recovery of intracellular pH. Carbachol caused an increase in intracellular pH from 7.12 +/- 0.01 to 7.21 +/- 0.02 (n = 10). This increase in intracellular pH caused by carbachol was inhibited by amiloride. These results suggest the existence of an amiloride-sensitive Na+/H+ exchange that regulates the intracellular pH in adrenal medullary cells.  相似文献   

11.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

12.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

13.
For plants growing in highly saline environments, accumulation of sodium in the cell cytoplasm leads to disruption of metabolic processes and reduced growth. Maintaining low levels of cytoplasmic sodium requires the coordinate regulation of transport proteins on numerous cellular membranes. Our previous studies have linked components of the Salt-Overly-Sensitive pathway (SOS1-3) to salt tolerance in Arabidopsis thaliana and demonstrated that the activity of the plasma membrane Na+/H+ exchanger (SOS1) is regulated by SOS2 (a protein kinase) and SOS3 (a calcium-binding protein). Current studies were undertaken to determine if the Na+/H+ exchanger in the vacuolar membrane (tonoplast) of Arabidopsis is also a target for the SOS regulatory pathway. Characterization of tonoplast Na+/H+ exchange demonstrated that it represents activity originating from the AtNHX proteins since it could be inhibited by 5-(N-methyl-N-isobutyl)amiloride and by anti-NHX1 antibodies. Transport activity was selective for sodium (apparent Km=31 mm) and electroneutral (one sodium ion for each proton). When compared with tonoplast Na+/H+-exchange activity in wild type, activity was significantly higher, greatly reduced, and unchanged in sos1, sos2, and sos3, respectively. Activated SOS2 protein added in vitro increased tonoplast Na+/H+-exchange activity in vesicles isolated from sos2 but did not have any effect on activity in vesicles isolated from wild type, sos1, or sos3. These results demonstrate that (i) the tonoplast Na+/H+ exchanger in Arabidopsis is a target of the SOS regulatory pathway, (ii) there are branches to the SOS pathway, and (iii) there may be coordinate regulation of the exchangers in the tonoplast and plasma membrane.  相似文献   

14.
Chromaffin granules, the secretory vesicles of the adrenal medulla, have a Na+/H+ exchange activity in their membranes which brings their proton gradient into equilibrium with a Na+ gradient. This explains why Na+ is mildly inhibitory to amine transport (which is driven by the H+ gradient) The activity can be demonstrated by using accumulation of 22Na+ in response to a pH gradient that is either imposed by diluting membrane 'ghosts' into alkaline media, or generated by ATP hydrolysis. It can also be monitored indirectly by fluorescence measurements in which the pH inside 'ghost' is monitored by quenching of a fluorescent weak base. This method has been used to monitor Na+ entry into acid-loaded 'ghosts' of H+ entry into methylamine accumulation. The exchanger appears to be reversible and non-electrogenic, with a stoichiometry of 1:1. Using an indirect assay we measured an apparent Km for Na+ of 4.7 mM, and a Ki for amiloride, a competitive inhibitor, of 0.26 mM. Direct assays using 22Na+ suggested a higher Km. Ethylisopropylamiloride was not inhibitory.  相似文献   

15.
Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.  相似文献   

16.
Sealed membrane vesicles of Acholeplasma laidlawii were obtained by controlled lysis of carotenoid-rich intact cells. An imposed delta pH was created by loading membrane vesicles or intact Acholeplasma laidlawii cells with 0.25 M NH4Cl and diluting them into 0.25 M choline chloride. The passive efflux of NH3 from the membrane vesicles or cells resulted in the creation of a delta pH (inside acid) that could be visualized by the quenching of the fluorescence of the weak base acridine orange. Whereas with isolated membrane vesicles, the fluorescence was dequenched by the addition of Na+, with intact cells, K+ in addition to Na+ was required. These results strongly suggest a Na+/H+ exchange activity that in intact Acholeplasma laidlawii cells is K+-dependent. The possible role of the Na+/H+ exchange activity in pH homeostasis at the more alkaline pH range, as well as in the extrusion of excess Na+ from the cells is discussed.  相似文献   

17.
Changes in carbonic anhydrase (CA) activity have been associated with metabolic diseases like diabetes mellitus and hypertension. To explore the exchange of H+ for Na+ and 22Na+, the sodium pool, CA activity and H2O content in erythrocytes from the two groups of diabetic chronic renal failure (CRF) patients with and without hypertension before dialysis were studied. The results were compared with those from the normotensive controls. The CA activity was determined spectrophotometrically, the sodium pool by ouabain insensitive 22Na+ influx and the percent H2O content gravimetrically. The 22Na+ influx in CRF patients with hypertension was significantly higher (p less than 0.025) than in the normotensive CRF patients and the controls. The levels of CA activity (U/min/mL) and the percent H2O content were significantly different in the hypertensive and the normotensive CRF patients from the control group (2.24 +/- 0.69 and 67.11 +/- 1.33, 1.95 +/- 0.63 and 66.43 +/- 1.51, 1.44 +/- 0.07 and 63.61 +/- 1.72, respectively). The present study implies a relationship between the 22Na+ influx and CA activity in CRF patients with hypertension. The variation of CA activity may thus result in changes in H+ production and ultimately in the intracellular Na+ pool.  相似文献   

18.
A sodium ion gradient (inside low) across the cytoplasmic membrane of Methanosarcina barkeri was required for methanogenesis from methanol. This could be concluded from the following results. (a) Inhibition of the Na+/H+ antiporter by K+ or amiloride led to an inhibition of methanogenesis from methanol. (b) Upon addition of the sodium ionophore monensin the Na+ gradient was abolished and at the same time methanogenesis from methanol was inhibited. (c) Methanogenesis was impaired when the Na+ gradient had the opposite orientation (inside high). All these inhibitory effects were not observed when H2 was present in addition to methanol indicating that the oxidation of methanol to CO2 was driven by a sodium-motive force. In accordance with this, a methanol-dependent influx of Na+ and a corresponding decrease of the membrane potential could be observed, when the Na+/H+ antiporter was inhibited by amiloride. This influx was indicative of the presence of a Na+ transport system which was functional when the oxidation of methanol had to be driven, but was not functional when H2 was present for reduction of methanol to methane.  相似文献   

19.
The nature of Na+ fluxes in resting and in chemotactic factor-activated human neutrophils was investigated. In resting cells, ouabain-insensitive unidirectional 22Na+ in- and effluxes represented passive electrodiffusional fluxes through ion channels: they were nonsaturable and voltage-dependent (PNa = 4.3 X 10(-9) cm/s). Amiloride (1 mM) had little effect on resting 22Na+ influx (approximately 0.8 meq/liter X min), thereby suggesting a minor contribution of Na+/H+ exchange and a lack of amiloride-sensitive Na+ channels. When neutrophils were exposed to the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP, 0.1 microM), 22Na+ influx was stimulated approximately 30-fold (initial rate approximately 22 meq/liter X min). The FMLP-induced 22Na+ influx was saturable with respect to external Na+ (Km 26-35 mM, Vmax approximately 28 meq/liter X min), was electroneutral, and could be competitively inhibited by amiloride (Ki 10.6 microM). From a resting value of approximately 30 meq/liter of cell water, internal Na+ in FMLP-stimulated cells rose exponentially to reach a concentration of approximately 60 meq/liter by 10-15 min. This uptake was blocked by amiloride. FMLP also stimulated the efflux of 22Na+ which followed a single exponential time course (rate coefficient approximately 0.16 min-1). The FMLP-induced 22Na+ fluxes were similar to those observed with 10 microM monensin, a known Na+/H+ exchanging ionophore. The data indicate that FMLP activates an otherwise quiescent, amiloride-sensitive Na+/H+ exchange. Furthermore, all of the FMLP-induced 22Na+ fluxes can be satisfactorily accounted for by transport through the exchanger, leaving little room for an appreciable increase in Na+ conductance.  相似文献   

20.
Nerve growth factor (NGF) inhibits transepithelial HCO3- absorption in the rat medullary thick ascending limb (MTAL). To investigate the mechanism of this inhibition, MTALs were perfused in vitro in Na+-free solutions, and apical and basolateral membrane Na+/H+ exchange activities were determined from rates of pHi recovery after lumen or bath Na+ addition. NGF (0.7 nM in the bath) had no effect on apical Na+/H+ exchange activity, but inhibited basolateral Na+/H+ exchange activity by 50%. Inhibition of basolateral Na+/H+ exchange activity with ethylisopropyl amiloride (EIPA) secondarily reduces apical Na+/H+ exchange activity and HCO3- absorption in the MTAL (Good, D. W., George, T., and Watts, B. A., III (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 12525-12529). To determine whether a similar mechanism could explain inhibition of HCO3- absorption by NGF, apical Na+/H+ exchange activity was assessed in physiological solutions (146 mM Na+) by measurement of the initial rate of cell acidification after lumen EIPA addition. Under these conditions, in which basolateral Na+/H+ exchange activity is present, NGF inhibited apical Na+/H+ exchange activity. Inhibition of HCO3- absorption by NGF was eliminated in the presence of bath EIPA or in the absence of bath Na+. Also, NGF blocked inhibition of HCO3- absorption by bath EIPA. We conclude that NGF inhibits basolateral Na+/H+ exchange activity in the MTAL, an effect opposite from the stimulation of Na+/H+ exchange by growth factors in other systems. NGF inhibits transepithelial HCO3- absorption through inhibition of basolateral Na+/H+ exchange, most likely as the result of functional coupling in which primary inhibition of basolateral Na+/H+ exchange activity results secondarily in inhibition of apical Na+/H+ exchange activity. These findings establish a role for basolateral Na+/H+ exchange in the regulation of renal tubule HCO3- absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号