首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用免疫电镜方法对脊髓胶状质内GABA能神经元的突触联系进行了超微结构研究。结果表明;脊髓胶状质内有许多GABA能神经元胞体和末梢分布;标记的GABA能神经末梢可作为突触前成分与未标记的GABA形成输一树突触。未标记的末梢可与标记的GABA末梢形成输一轴突触。此外,标记的GABA能神经末梢还可作为突触前成分与标记的GABA能轴突、树突或胞体形成输-轴、轴-树或轴-体突触,即自调节突触。上述结果揭示:GABA能末梢可对脊髓胶状质内其它神经元产生抑制或脱抑制作用。值得注意的是胶状质内含GAnA的神经结构可形成各种形式的自调节突触,并借此实现其对脊髓功能的复杂调节。  相似文献   

2.
脑皮层的功能连接模式与突触可塑性密切相关,受突触空间分布和刺激模式等多种因素的影响。尽管越来越多的证据表明突触可塑性不仅受突触后动作电位而且还受突触后局部树突电位的影响,但是目前尚不清楚神经元的功能连接模式是否和怎样依赖于突触后局部电位的。为此,本文建立了一个无需硬边界设置的、突触后局部膜电位依赖的可塑性模型。该模型具有突触强度的自平衡能力并且能够再现多种突触可塑性实验结果。基于该模型对两个锥体神经元的功能连接模式进行仿真的结果表明,当突触后局部电位都处于亚阈值时两个神经元无功能连接,如果一个神经元的突触后膜电位高于阈值电位则产生向该神经元的单向连接,当两个神经元的突触后膜电位都超过阈值电位时则产生双向连接,说明突触后局部膜电位分布是神经元功能连接模式形成的关键。研究结果加深了神经网络连接模式形成机制的理解,对学习和记忆的研究具有重要意义。  相似文献   

3.
近年来,对胶质细胞功能的研究迅速发展.诸多研究都表明胶质细胞不仅为神经元功能发挥提供良好环境,而且还直接影响突触形成及其功能完善.此外胶质细胞也可以通过自身释放化学递质与神经元形成突触联系,参与对神经元兴奋性及突触传导的调节.  相似文献   

4.
黄守卫  刘慧  孟炜寒  曾燕  魏珍 《生命科学》2021,(11):1400-1408
KIRREL3 (kin of irregular chiasm-like 3)又称Neph2,是一种包含免疫球蛋白结构域的跨膜蛋白,可通过胞内和胞外结构域与多种蛋白质相互作用,选择性地诱导神经元之间的突触形成,参与突触发育、神经元迁移和细胞内信号转导等生物学过程.KIRREL3基因错义突变和拷贝数变异会减弱突触形成过...  相似文献   

5.
疼痛包括感觉分辨和情绪体验两个基本成分。对疼痛感觉分辨成分的研究,在基因、分子、细胞和系统水平已获得重要进展,但对于疼痛的情绪、情感成分的研究相对滞后。越来越多的临床观察显示,疼痛特别是慢性疼痛所伴随的负性情绪状态,严重影响患者的身心健康。本文简要总结了痛厌恶情绪研究领域的主要进展,着重阐述了前扣带皮层(anterior cingulate cortex,ACC)参与痛厌恶情绪过程的神经机制,特别是ACC神经元NMDA受体和ERK-CREB信号通路的关键性作用。多种调控分子如突触相关蛋白SIP30和雌激素可通过突触前和突触后机制调控兴奋性氨基酸释放、NMDA受体功能和ACC锥体神经元突触可塑性参与痛厌恶情绪的形成。  相似文献   

6.
锌及锌转运蛋白ZnT3在小鼠海马苔藓纤维的一致性分布   总被引:1,自引:0,他引:1  
目的 研究游离锌离子和锌转运蛋白ZnT3在小鼠海马的定位以及二的分布是否具有一致性。方法 应用锌TSQ荧光技术、锌金属自显影技术检测含锌神经元内的游离锌离子;应用免疫电镜技术检测ZnT3在含锌神经元轴突终末的分布。结果 游离锌离子和ZnT3免疫反应产物的分布在海马苔藓纤维内的分布具有一致性。在齿状回和CA3区的苔藓纤维内,锌和ZnT3蛋白定位于轴突终末的突触小泡。富含锌离子的含锌神经元轴突终末与CA3区锥体细胞的胞体和树突形成突触。尚可见锌离子存在于突触间隙内。结论 ZnT3向突触小泡内转运锌离子使锌离子聚积在含锌神经元轴突终末的突触小泡内,发挥锌离子的神经生物学功能。  相似文献   

7.
运用电子显微镜观察分析原代分离培养鼠胚脊髓的固有神经元的突触构筑。培养中主要可见中、小型神经元,彼此之间可形成大量的突触,以非对称性突触占多数,有轴-树突触和轴-体突触,树-树突触为少见。根据以前学者分类标准将终扣分成S、F、M、和G四型。超微结构有利于提示固有神经元经过简单突触从脊髓固有神经纤维接受突触传入,表示它们的冲动只是突触后机制控制信息传递。  相似文献   

8.
突触的可塑性与学习,记忆机制   总被引:11,自引:0,他引:11  
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。  相似文献   

9.
Ca2+和突触细胞融合   总被引:1,自引:0,他引:1  
神经突触传递对于神经系统功能的实现具有十分重要的意义,而神经突触传递涉及到突触囊泡膜和突触前膜的融合,3种膜蛋白SNARE特异性识别并形成复合物,从而介导了神经递质的释放。Ca^2 通过其感受器突触结合蛋白而调节了突触细胞的融合过程,也最终影响了神经元的胞吐作用。  相似文献   

10.
瞬间外向钾电流(IA)具有快速激活和失活等特征,是动作电位复极化早期外向钾离子电流的主要成分,广泛分布在海马神经元,树突处尤为突出.该电流通过减慢去极化速度和延缓动作电位的产生等作用,调节突触的输入和动作电位的反向传播,从而在信号整合及突触可塑性等过程中扮演重要角色.很多人类疾病,如癫痫性疾病等,和海马神经元的IA电流有关.  相似文献   

11.
NG2细胞是广泛分布于CNS中表达NG2蛋白多糖的一种胶质细胞,也被称为少突胶质前体细胞(oligodendrocyteprecur—sorcells,oPc)。该细胞具有典型复杂的星形形态和长突起围绕于胞体周围,表达电压门控的K+和Na+通道、GABAA以及AMPA/红藻氨酸受体并接受神经元突触的信号输入。NG2细胞增殖分化是保证神经元轴突髓鞘化的首要前提,NG2的增殖分化不能仅依靠其自身调控,NG2-神经元突触联系可能也是调控NG2细胞增殖分化的信息中转站。伴随NG2细胞增殖分化神经元轴突的髓鞘化也不断形成,这些过程在围生期表现尤为明显;NG2细胞分化为少突胶质细胞后,其功能上具有”专一性”,所以可能存在NG2.神经元突触联系的作用被削弱的现象。因此,在NG2细胞增殖过程中,NG2细胞保持与神经元之间的功能性突触并将其传递给子代NG2细胞;而在NG2细胞分化的过程中,NG2细胞的突触信号输入迅速减少。NG2细胞不但是一种前体细胞,同时也是一种具有独特功能的胶质细胞,在中枢神经系统中发挥重要作用。本综述就NG2细胞在增殖分化过程中其突触信号的变化以及可能的意义进行阐述。  相似文献   

12.
非突触信息传递方式   总被引:3,自引:0,他引:3  
原始神经元在形成突触和传导性轴突之前,是把神经活性物质释放到含有淋巴血液的半开放循环系统中。通过这种类结缔组织,神经活性物质作用于邻近的效应器官和组织细胞,发挥调节作用。高等脊椎动物,神经元通过突触结构或/和神经内分泌方式进行调节。近年来发现,神经元可在无突触结构的情况下,以酷似上述第一种方式发挥调节作用,有人称之为“非突触信息传递方式”,它与经典的突触调节相并列,成为神经系统正常调节机能的重要组成部分。  相似文献   

13.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:3,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

14.
钙 钙调蛋白依赖性蛋白激酶II(calcium /calmodulindependentproteinkinaseII ,CaMKII)在兴奋性突触长时程增强 (longtermpotentiation ,LTP)和其他形式的突触可塑性等生理现象中起重要作用。用观察神经元胞体内某种分子参与突触后致密物 (postsynapticdensities ,PSD)的组成可以判断此分子是否参与LTP等突触可塑性过程。体外实验发现 ,用绿色荧光蛋白 (greenfluorescentprotein ,GFP)标记的CaMKII分子可在神经元受到谷氨酸或者直接电刺激后形成突触后膜密度簇 (PDSclusters)。最近 ,纽约州大学学者MichelleR .Gleason等进一…  相似文献   

15.
猫脊髓背角双投射神经元的外周传入特性   总被引:1,自引:0,他引:1  
电刺激猫颈髓背索和背外侧索可双重地逆向激动同侧腰骶髓背角神经元。该神经元对非伤害性和伤害性皮肤刺激发生反应;对电刺激其感受野的反应具有单突触性、低阈值和传导快等特征;该神经元的突触前和突触后纤维的传导速度相似,但不具正变关系。结果表明,SCT-DCPS神经元具有低阈机械感受型和广动力范围型两种生理学模型;从A_β传人接受输入并与之构成单突触联系;其突触前纤维直径与突触后纤维直径之间不具匹配关系。  相似文献   

16.
神经元胞浆内嗜酸性包涵体——Lewy体的出现是帕金森病(Parkinson’s disease,PD)的典型病理学特征,而α-突触核蛋白(α-synuclein)是纤维样Lewy体的主要成分。随着研究深入,越来越多的证据表明:α-突触核蛋白纤维性聚集体的产生是PD发病的一个关键环节。病理条件下,由于α-突触核蛋白的结构改变,导致错误折叠,继而纤维化,最终形成纤维性聚集体,这一过程在PD研究中日趋展现出其重要性。α-突触核蛋白结构中,N端、C端、NAC(non-amyloid component)区等区域具有各自特定的结构及功能,在其聚集体产生过程中各司其职。本文就近年来对α-突触核蛋白分子结构及其相应功能的研究进行综述,希望通过深入的综合分析,为寻找α-突触核蛋白结构中潜在的疾病治疗靶标提供理论依据。  相似文献   

17.
正突触间的连接受到多种蛋白质的活性与功能的协调配合,细胞周期依赖性蛋白激酶5(Cyclin-dependent kinase 5,Cdk5)的激活在突触形成过程中发挥重要作用,Cdk5的过度激活可通过减少树突棘数量及下调神经元表面受体NMDA的表达导致突触形成障碍。最近,来自香港理工大学的研究团队发现NO可对Cdk5特异性激活子p35进行亚硝基化修饰,进而介导蛋白酶体降解途径下调p35表达,降低Cdk5活性。研究人员发现,在神经元型一氧化氮合酶(nNOS)敲除小鼠中,海马神经元密度及成熟性均显著下降,神经元表面受体  相似文献   

18.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

19.
《植物杂志》2010,(8):6-6
近日,科学家开发了一项能够在成体水平小鼠脑区的复杂神经网络系统中特异性标记单个神经元细胞及其神经突触分布形式的技术。该项技术利用转基因方法在小鼠不同脑区的神经元细胞可控地表达不同的荧光蛋白和突触囊泡蛋白,应用不同分子标记对神经元细胞及其突触进行特异性标记,能够在单个神经元细胞水平上提供详尽的三维神经突触分布信息,  相似文献   

20.
与长时程增强相关的基因表达的研究进展   总被引:4,自引:0,他引:4  
Xu H  Han TZ  Chen YW 《生理科学进展》2001,32(2):174-176
长地程增强(long-term potentiation,LTP)现象在细胞水平和分子水平反映突触的可塑性,它被认为是记忆过程中神经元活动的客观电生理指标。对其机制的研究表明,伴随着LTP的产生,有基因表达和蛋白质成分的改变。揭开LTP形成过程中所伴随的基因表达的改变,也许是探讨LTP形成机制的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号