首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA was extracted from pure preparations of micromeres and meso-plus macromeres isolated from 16-cell stage embryos of Dendraster excentricus. Molecular hybridization-competition experiments disclosed that the binding of 16-cell stage labeled RNA to denatured sperm DNA was competed equally well by micromere RNA, meso-plus macromere RNA, total 16-cell RNA and unfertilized egg RNA, indicating the egg-type populations were distributed almost equally in the different blastomeres. In contrast, experiments with 3H-RNA extracted from micromeres obtained from pulse-labeled 16-cell stage embryos showed qualitative differences when unfertilized egg RNA and total 16-cell stage RNA were used as competitors. Such differences in RNA populations could not be detected in 3H-RNA isolated from the meso-plus macromere fraction.  相似文献   

2.
The incorporation of radioactive uridine into RNA by micromeres, mesomeres and macromeres of sea urchin embryos was studied, employing methods for separating the cell types in pure suspension. At the 16-cell stage, the 3-cell types, on a per genome basis, synthesized RNA at approximately the same rate although on a per mg protein basis the micromere-RNA synthetic rate was considerably higher than either mesomeres or macromeres. At the 32-cell stage, incorporation of radioactive uridine by micromeres decreased relative to mesomeres and macromeres. It was demonstrated that radioactive uridine could not be effectively washed or diluted out of the cells of 16-cell stage embryos. Experiments on reaggregating cells did not detect any transfer or transport of radioactivity from micromeres to the other cells. Possible explanations for these findings versus the disparate results of previous investigators were presented.  相似文献   

3.
Inhomogeneous distribution of egg RNA sequences in the early embryo   总被引:6,自引:0,他引:6  
W H Rodgers  P R Gross 《Cell》1978,14(2):279-288
  相似文献   

4.
Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa mRNA, which is present uniformly throughout all cells of the early embryo, vasa protein accumulates selectively in the 16-cell stage micromeres, and then is restricted to the small micromeres through gastrulation to larval development. Manipulating early embryonic fate specification by blastomere separations, exposure to lithium, and dominant-negative cadherin each suggest that, although vasa protein accumulation in the small micromeres is fixed, accumulation in other cells of the embryo is inducible. Indeed, we find that embryos in which micromeres are removed respond by significant up-regulation of vasa protein translation, followed by spatial restriction of the protein late in gastrulation. Overall, these results support the contention that sea urchins do not have obligate primordial germ cells determined in early development, that vasa may function in an early stem cell population of the embryo, and that vasa expression in this embryo is restricted early by translational regulation to the small micromere lineage.  相似文献   

5.
6.
The sequence complexity of sea urchin embryo micromere RNA is about 75% of that of total 16-cell embryo cytoplasmic RNA, as reported earlier by Rodgers and Gross [Rodgers, W. H., and Gross, P. R. (1978) Cell, 14, 279–288]. In contrast to the rest of the embryo, there are few, if any, complex maternal RNA species in the micromere cytoplasm which are not represented in the polysomes. The micromeres do not contain detectable quantities of high-complexity nuclear RNA, though such RNA exists in other cells of the fourth-cleavage embryo.  相似文献   

7.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

8.
The sea urchin larval skeleton is produced by the primary mesenchyme (PM), a group of 32 cells descended from the four micromeres of the 16-cell embryo. The development of this lineage proceeds normally in isolated cultures of micromeres. A complementary DNA (cDNA) library was generated from cytoplasmic polyadenylated RNA isolated from differentiated micromere cultures of Strongylocentrotus purpuratus. Five clones were selected on the basis of their enrichment in differentiated PM cell RNA as compared to the polyribosomal RNAs of other embryonic cell types and other developmental stages. Each cloned cDNA hybridized to a distinct RNA that was abundant in the polyribosomes of differentiated PM cells, but absent from larval ectoderm and from 16-cell embryos. These RNAs were encoded by single or low copy genes. In situ hybridization analysis of the most abundant of these RNAs (SpLM 18) demonstrated that it was specifically limited to the skeletogenic PM of intact embryos. During the development of the PM, all five RNAs exhibited the same schedule of accumulation, appearing de novo, or increasing abruptly just before PM ingression, and remaining at relatively high levels thereafter. This pattern of RNA accumulation closely paralleled the pattern of synthesis of PM-specific proteins in general (Harkey and Whiteley, 1983) and of the SpLM 18-encoded protein specifically (Leaf et al., 1987). These results indicate that at least five distinct genes in the sea urchin, each of which encodes a PM-enriched or PM-specific mRNA, are expressed with tight coordination during development of the larval skeleton. They also demonstrate that expression of these genes in the PM is regulated primarily at the level of RNA abundance rather than RNA utilization.  相似文献   

9.
In cultured cells derived from isolated micromeres of 16-cell stage sea urchin embryos, which undergo insulin-induced pseudopodial cable growth, specific and reversible insulin binding by a 52-kDa protein, probably an insulin receptor in the plasma membrane, is augmented during 5 h of culture without any change in the dissociation constant (Kuno et al : 1994). The increase in insulin-binding capacity in micromere-derived cells was only minimally blocked by actinomycin D and cycloheximide, which inhibited [U-3H]uridine incorporation into RNA and [35S]methionine incorporation into protein, respectively. Insulin binding capacity was found in the plasma membrane fraction and the microsome fraction of isolated micromeres. The capacity in the plasma membrane fraction increased, accompanied by its decrease in the microsome fraction, during 5 h of culture of micromere-derived cells. The insulin receptor is probably accumulated in microsomes of presumptive micromeres prior to the 16-cell stage and transferred to the plasma membrane, resulting in an increase in the insulin binding capacity of micromere-derived cells during 5 h of culture.  相似文献   

10.
11.
To clarify the distribution and behavior of the maternal factors that direct the differentiation of primary mesenchyme cells (PMC) in sea urchin embryos, unequal division was induced at the third cleavage with the treatment of dinitro-phenol (DNP), and the numbers of differentiated PMC were examined. The most surprising finding was that the number of PMC was considerably increased in some of the DNP-treated embryos. This increase in the number of PMC was suggested to be closely related to the size of the precocious micromeres formed at the 8-cell stage. By measuring both the size of the precocious micromeres and the number of PMC in individual embryos, it was suggested that almost all the descendants of the precocious micromeres differentiated into PMC, if the volume was less than 26 pL (about three times the volume of normal micromeres). Cell tracing experiments ascertained that precocious micromeres with small volumes behave just like micromeres formed at the fourth cleavage in normal embryos. The obtained results indicated that the maternal factors present in sea urchin embryos can direct, at least, more than three times the number of PMC, and that the number of cell divisions of the PMC lineage is not strictly regulated.  相似文献   

12.
The micromeres, the first cells to be specified in sea urchin embryos, are generated by unequal cleavage at the fourth cell division. The micromeres differentiate autonomously to form spicules and dispatch signals to induce endomesoderm in the neighbouring macromeres cells in the embryo. Using a calcium indicator Fura-2/AM and a mixture of dextran conjugated Oregon green-BAPTA 488 and Rhodamine red, the intracellular calcium ion concentration ([Ca2+]i) was studied in embryos at the 16-cell stage. [Ca2+]i was characteristically elevated in the micromeres during furrowing at the 4th cleavage. Subsequently, Ca2+ oscillated for about 10 min in the micromeres, resulting in episodic high levels of [Ca2+]i. High [Ca2+]i regions were associated with regional localizations of the endoplasmic reticulum (ER), though not with ER accumulated at the vegetal pole of the micromeres during the 4th division. Pharmacological studies, using a blocker of IP3-mediated Ca2+ release (Xestospongin), a store-operated Ca2+ entry inhibitor (2 aminoethoxydiphenyl borate (2-APB)) and an inhibitor of stretch-dependent ion channels (gadolinium), suggest that the high [Ca2+]i and oscillations in the micromeres are triggered by calcium influx caused by the activation of stretch-dependent calcium channels, followed by the release of calcium ions from the endoplasmic reticulum. On the basis of these new findings, a possible mechanism for autonomous formation of the micromeres is discussed.  相似文献   

13.
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.  相似文献   

14.
The developmental potential of the animal cap (consisting of eight mesomeres) recombined with micromeres or of micromere progeny was examined in sea urchin embryos. The embryos derived from the animal cap recombined with a quartet of micromeres or their descendants developed into four-armed plutei. After feeding, the larvae developed into eight-armed plutei. The left-right polarity of the larvae, recognized by the location of the echinus rudiment, was essentially normal, regardless of the orientation of animal-vegetal polarity in micromeres combining with the animal cap. The larvae had sufficient potential to metamorphose into complete juvenile sea urchins with five-fold radial symmetry. Cell lineage tracing experiments showed that: (i) macromere progeny were not required for formation of the typical pattern of primary mesenchyme cells derived exclusively from large micromeres; (ii) the progeny of large micromeres did not contribute to cells in the endodermal gut with three compartments of normal function; (iii) the presumptive ectoderm had the potential to differentiate into endodermal gut and mesodermal secondary mesenchyme cells, from which pigment cells likely differentiated; and (iv) behavior of the progeny of small micromeres was the same as that in normal embryos through the gastrula stage. These results indicate that the mesomeres respecify their fate under the inductive influence of micromeres so perfectly that complete juvenile sea urchins are produced.  相似文献   

15.
A study was made of 1st cell cycle of small micromeres, segregated at the 5th cleavage cycle, in the sea urchin embryos of Hemicentrotus pulcherrimus . For identification of small micromeres, the embryos were pulse labeled with 5-bromodeoxyuridine (BrdU) at the 1st cleavage. Using multiparametric microfluorometry equipped with a scanning stage (Tanaka, 1990), DNA content, extent of BrdU incorporation, protein content and the extent of 3H-thymidine labeling were measured on identical individual cells dissociated from an embryo. The findings of the present study are as follows. There is a short period of time between the telophase and onset of DNA replication. The period of DNA replication is 5 hr and after which, asynchronous mitosis takes place to produce 8 cells before hatching. The long S period is 83% the total 6 hr of the cell cycle. The rate of DNA accumulation is quite small during the initial one third of S but increases later in this phase. The degree of chromatin condensation remains high even during the S phase but it is low in large micromeres. The cell cycle may possibly be related causally to the development of small micromeres. The developmental significance of cell cycle duration, particularly that of DNA replication is discussed.  相似文献   

16.
The chromatin structure of three cell types isolated from the 16-cell stage sea urchin embryo has been probed with micrococcal nuclease. In micromeres, the four small cells at the vegetal pole, the chromatin is found to be considerably more resistant to degradation by micrococcal nuclease than chromatin in the larger mesomere and macromere cells which undergo more cellular divisions and are committed to different developmental fates. The micromeres show an order of magnitude decrease in the initial digestion rate and a limit digest value which is one third that of the larger blastomeres; both observations are suggestive of the formation of a more condensed chromatin structure during the process of commitment, or as the rate of cell division decreases. The decreased sensitivity to nuclease for micromeres is similar to results reported for sperm and larval stages of development.  相似文献   

17.
Many indirect developing animals create specialized multipotent cells in early development to construct the adult body and perhaps to hold the fate of the primordial germ cells. In sea urchin embryos, small micromeres formed at the fifth division appear to be such multipotent cells: they are relatively quiescent in embryos, but contribute significantly to the coelomic sacs of the larvae, from which the major tissues of the adult rudiment are derived. These cells appear to be regulated by a conserved gene set that includes the classic germline lineage genes vasa, nanos and piwi. In vivo lineage mapping of the cells awaits genetic manipulation of the lineage, but previous research has demonstrated that the germline is not specified at the fourth division because animals are fertile even when micromeres, the parent blastomeres of small micromeres, are deleted. Here, we have deleted small micromeres at the fifth division and have raised the resultant larvae to maturity. These embryos developed normally and did not overexpress Vasa, as did embryos from a micromere deletion, implying the compensatory gene regulatory network was not activated in small micromere-deleted embryos. Adults from control and micromere-deleted embryos developed gonads and visible gametes, whereas small micromere-deleted animals formed small gonads that lacked gametes. Quantitative PCR results indicate that small micromere-deleted animals produce background levels of germ cell products, but not specifically eggs or sperm. These results suggest that germline specification depends on the small micromeres, either directly as lineage products, or indirectly by signaling mechanisms emanating from the small micromeres or their descendants.  相似文献   

18.
In the sea urchin Paracentrotus lividus, the first three cleavages are synchronous in all blastomeres. Upon the segregation of the micromeres at the fourth cleavage, a vegetal-animal gradient of cell division begins; i.e., the closer the cells are to the micromeres, the earlier they enter mitosis. The phase difference between mitotic cells along the vegetal-animal axis increases concurrently with the increase in cell number. At the blastula stage, mitoses appear organized in clusters. From the mesenchyme-blastula stage onward, the clusters become smaller and most of the mitotic cells are solitary. The size of the clusters increases upon treatment with colchicine, thus suggesting the existence of pacemaker units of mitotic activity. We confirm that the division of the micromeres is out of phase with respect to the other blastomeres. Of the eight cells originating from the first division of the micromeres, only the four outer ones continue to cleave; the four inner ones appear to have lost the ability to divide. The overall mitotic activity is high during cleavage and suddenly drops to very low levels around hatching. An interpretation of these results is presented in terms of a nonlinear oscillators theory.  相似文献   

19.
Summary The significance of the first quartet of micromeres for the morphogenesis ofBithynia — a polar lobe-forming gastropod-has been studied by deletion experiments. After removal of the whole first quartet at the 8-cell stage a dorsoventrally organized veliger larva is formed. Apparently, an interaction between the animal micromeres and a vegetal macromere, which is essential for the origin of a dorsoventral organization in equally cleaving gastropods, is not required in polar lobe forming eggs. It is concluded that in these eggs dorsoventrality is determined by segregation of the polar lobe. The embryos, in which the first quartet has been removed, never develop head structures. This indicates that the capacity to form head structures is restricted to the first quartet of micromeres. Deletion of a specific first quartet micromere (1a, 1b, 1c or 1d) showed, however, that the individual cells of this quartet are not strictly determined right from their origin. Frequently regulative development was observed after removal of individual first quartet cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号