首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Ultrastructural modifications of plastids in leaflets of Larix decidua and Picea excelsa during sprouting of buds.—Ultrastructural modifications of plastids in leaflets of Larix decidua and Picea excelsa during sprouting of buds kept in different light conditions were observed.

While in quiescent buds of both species typical plastids with magnograna are present, fully expanded leaflets kept in the light have plastids with an organized lamellar apparatus.

When the buds are kept in darkness the cells of the fully expanded, etiolated leaflets have hardly differentiated plastids with prolamellar bodies partially modified into short tubules and vesicles.

Plastids of Picea and Larix buds, in their development, behave almost identically both in darkness and in the light.

The differences previously observed in dark grown seedlings of the two species are not to be found in buds.  相似文献   

2.
Plastid development in albescent maize   总被引:2,自引:1,他引:1       下载免费PDF全文
Troxler RF  Lester R  Craft FO  Albright JT 《Plant physiology》1969,44(11):1609-1611,1613,1615-1618
Plastid development in albescent (al/al) and wild-type (+/al) strains of Zea mays has been studied in the electron microscope. Etiolated seedlings of the mutant are severely deficient in colored carotenoid pigments and accumulate carotenoid precursors tentatively identified as phytoene and phytofluene. The fine structure of proplastids in etiolated wild-type and mutant leaves is similar with 1 notable exception. Osmiophilic bodies found in the wild-type were lacking in all sections of albescent proplastids examined suggesting that these structures may be storage centers for carotenoid pigments. Plastid pigments are destroyed, chlorophyll synthesizing potential is lost, and the ultrastructure of plastids is irreversibly altered when mutant seedlings are placed directly in high intensity light. However, synthesis of plastid pigments and development of the photosynthetic apparatus as seen in the electron microscope is normal, and indistinguishable from that in the wild-type, in seedlings of the albescent mutant preilluminated with low intensity light prior to high intensity illumination. During treatment in low intensity light carotenogenesis is initiated in the mutant and proceeds normally thereafter.  相似文献   

3.
The fine structure of plastids in the fruit of cherry peppers was studied during the various stages of ripening. The color change of fruit during ripening is due to the quantitative change of such pigment components as chlorophyll, carotenoid and anthocyanin. Plastid metamorphosis takes place in relationship to the disappearance of chlorophyll and the new formation of carotenoids. The membrane system of plastids degenerates through ripening, although a little differentiation is observed in young plastids of creamy fruits. In parallel wity the color change of fruit from cream to orange, the osmiophilic globules increase in both number and size. As ripening proceeds further, the large osmiophilic globules seem to be gradually transformed into the needle shaped crystalloids of carotenoid pigments which are the remarkable feature of the chromoplasts in red-ripe fruit. The relationship between the development of chromoplasts and the increase and decrease of some pigments is also discussed.  相似文献   

4.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m-2s-1) and saturating light intensity (1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m-2s-1) and with (an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants.  相似文献   

5.
P. Gori 《Protoplasma》1980,103(3):263-271
Summary Carpospores ofG. clavatum have been studied under the light and electron microscopes. They are wedge-shaped cells of 80–100 m at their longest diameters. The nucleus is an uncondensed structure provided with a regular outline and a large nucleolus. The plastids constitute heterogeneous populations of organelles differing in size and shape as well as in number and arrangement of the thylakoids. Multiplicating plastids are also present. The mitochondria are small but have well developed cristae. The Golgi apparatus consists of very numerous active dictyosomes. Starch is the main storage substance but some large lipid bodies are also present. Labyrinthine polysaccharide aggregations are present in the carposporial cytoplasm. Multilayered bodies constitute a sui generis very conspicuous cell component.  相似文献   

6.
《BBA》2022,1863(7):148589
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes.In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.  相似文献   

7.
Summary The ultrastructure, pigments and photosynthetic capacities of 3 X-ray induced mutants (C-2 A, C-6 D, and C-6 E) ofScenedesmus obliquus were studied whilst growing heterotrophically in the dark and upon transfer into the light (10,000 lux).Dark grown C-2 A, having no photosynthetic capacity and sparse amounts of chlorophylls a and b, greened at a faster rate than mutant C-6 D which already had photosystem I activity and chlorophyll a in the dark. Ultrastructural development to the wild-type situation was similar in both, but again much faster in C-2 A (24 hours) than in C-6 D (48 hours). In the dark grown C-2 A mutant the single lamellae differed from C-6 D in that they were already perforated. In the light, membrane overlapping took place in both to form first double, and later triple, thylakoid bands. A distinct phase of association of plastid ribosomes in a whorl-like arrangement with the developing thylakoids was shown by both only during the greening process. Over a similar period, mitochondrial appressions to these plastids were observed.In the dark, mutant C-6 E resembled dark grown C-6 D and possessed considerable photosystem I activity but no carotenoids. In the light it did not green, no ultrastructural changes were apparent and the unprotected chlorophyll a was photo-oxidized.All mutants in the dark showed tubular connections, resembling but not identical with the prolamellar bodies of higher plant etioplasts. Occasionally tubular connections similar to those in the dark-grown mutants were also found in the light.  相似文献   

8.
We studied the capacity of the thylakoid membrane to form grana stacks in the presence of cations, monovalent or divalent, added to N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine “low-salt” disorganized plastids during their greening. Grana stacking was monitored by the yield of heavy subchloroplast fractions separated by differential centrifugation after digitonin disruption of plastids (J. H. Argyroudi-Akoyunoglou, 1976, Arch. Biochem. Biophys., 176, 267–274). Primary thylakoids of the agranal protochloroplasts formed in periodic light do not show the cation-induced stacking capacity of the mature green chloroplast thylakoids. Similarly, the cation effect saturates at lower cation concentrations in mature chloroplasts than in plastids of the early stages of greening. The capacity for cation-induced stacking and for saturation of the effect at low cation concentrations appears gradually after exposure to continuous light and parallel to the appearance of chlorophyll b and the polypeptides of the 25,000–30,000 molecular weight range of lipid-free thylakoids, probably derived from the chlorophyll b-rich chlorophyll protein Complex II. The thylakoid peripheral stroma proteins ribulosediphosphate carboxylase and the coupling factor protein are not involved in the cation-induced stacking, since their removal (H. Strotmann, H. Hesse, and K. Edelmann, 1973, Biochim. Biophys. Acta, 314, 202–210) does not affect the thylakoid aggregation.  相似文献   

9.
10.
11.
Segments of 7-d low light-grown barley laminae cut at 0.5 cm intervals up from the intercalary meristem were examined ultrastructurally and biochemically. The different regions upwards showed the succession of plastid development in light-grown tissues of eoplasts, amyloplasts, amoeboid, immature and mature plastids as described by Whatley (1977). Semi-crystalline bodies were detected in all of them. The eoplast-amyloplast regions are characterised by a greater proportion of mitochondria and high levels of ATP and 3-phosphoglyceric acid, together with low levels of inorganic phosphate conducive to the activation of ADP glucose pyrophosphorylase. The amoeboid and immature plastid regions have higher levels of inhibitory phosphate and starch breakdown may be responsible for the release of metabolites and energy for development. Segments containing amoeboid and immature plastids also have reduced levels of ATP (and 3-phosphoglyceric acid) as photosynthetic components are synthesised. Using ultrastructural assessments of areas of thylakoids, first -carotene and violaxanthin, followed by chlorophyll a and lutein and, lastly, chlorophyll b are concentrated in the developing lamellar systems of the immature and mature chloroplasts. The formation of additional membraneous material which spreads these pigment systems over a greater thylakoid area within the plastids is the final stage of plastid morphogenesis in low light-grown seedlings.Abbreviations Chl chlorophyll - 3-PGA 3 phosphoglyceric acid  相似文献   

12.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

13.
High salinity causes ion imbalance and osmotic stress in plants. Leaf sections from 8-d-old dark-grown wheat (Triticum aestivum cv. Giza 168) were exposed to high salt stress (600 mM) and the native arrangements of plastid pigments together with the ultrastructure of the plastids were studied using low-temperature fluorescence spectroscopy and transmission electron microscopy. Although plastids from salt-treated leaves had highly swollen prothylakoids (PTs) the prolamellar bodies (PLBs) were regular. Accordingly, a slight intensity decrease of the short-wavelength protochlorophyllide (Pchlide) form was observed, but no change was found in the long-wavelength Pchlide form emitting at 656 nm. After irradiation, newly formed swollen thylakoids showed traversing stromal strands. The PLB dispersal was partly inhibited and remnants of the PLBs formed an electron-dense structure, which remained after prolonged (8 h) irradiation. The difference in fluorescence emission maximum of the main chlorophyll form in salt-stressed leaves (681 nm) and in control leaves (683 nm) indicated a restrained formation of the photosynthetic apparatus. Overall chlorophyll accumulation during prolonged irradiation was inhibited. Salt-stressed leaves returned to darkness after 3 h of irradiation had, compared with the control, a reduced amount of Pchlide and reduced re-formation of regular net-like PLBs. Instead, the size of the electron-dense structures increased. This study reports, for the first time, the salt-induced swelling of PTs and reveals traversing stromal strands in newly formed thylakoids. Although the PLBs were intact and the Pchlide fluorescence emission spectra appeared normal after salt stress in darkness, plastid development to chloroplasts was highly restricted during irradiation.  相似文献   

14.
N. Sato  O. Misumi  Y. Shinada  M. Sasaki  M. Yoine 《Protoplasma》1997,200(3-4):163-173
Summary Localization and protein composition of plastid nucleoids was analyzed in light-grown pea seedlings at various stages of leaf development. In young plastids of unopened leaf buds, nucleoids were abundant and localized in the periphery of plastids, whereas, in mature leaves, chloroplasts contained nucleoids within narrow spaces restricted by thylakoids or grana. The migration of nucleoids into the interior of plastids preceded the formation of grana, and hence, the maturation of the photosynthetic apparatus. The protein composition of nucleoids was considerably different in young plastids and mature chloroplasts. Polypeptides with a molecular mass of 70–100 kDa predominated in the nucleoids of young plastids, whereas polypeptides with molecular mass of 20–30 kDa were abundant in the nucleoids of mature chloroplasts. Immuno-blot analysis with antibodies against the nucleoids of young plastids identified various polypeptides that were significantly more abundant in the nucleoids of young plastids than in the nucleoids of mature chloroplasts. These results demonstrate that plastid nucleoids are subject to dynamic changes in both localization and composition during the normal development of chloroplasts in the light.Abbreviations DAPI 4,6-diamidino-2-phenylindol - DiOC6 3,3-dihexyloxacarbocyanine iodide  相似文献   

15.
Plastid Structure and Development in Green Callus Tissues of Oxalis dispar   总被引:3,自引:0,他引:3  
SUNDERLAND  N.; WELLS  B. 《Annals of botany》1968,32(2):327-346
Cultured callus tissues derived from endosperm of Oxalis disparare shown to contain virescent amyloplasts. In darkness, proplastidsdevelop into typical amyloplasts, starch being deposited assingle or multiple grains. In light, amyloplasts are transformedinto chloroplasts. Thylakoid formation begins in spaces aroundand between existing starch grains. As thylakoids are assembledinto grana, starch slowly disappears; the plastids increasein size and the photosynthetic apparatus enlarges to fill thewhole of the plastid. Slight carotenoid synthesis takes placeas amyloplasts are laid down, but there is no chlorophyll synthesis.All pigments accumulate rapidly during the early stages of granaldevelopment, but slowly, and at a declining rate, during thelater stages. Treatment of the tissues with auxins suppressesthe development of thylakoid membranes, but has no effect uponthe development of amyloplast membranes. The possible significanceof this observation is discussed. Greening is accompanied by a marked decline in the rates ofboth cell division and cell expansion. This is attributed inpart to the diversion of nitrogen from the normal growth channelsinto the synthesis of thylakoid proteins.  相似文献   

16.
17.
Detached etiolated wheat (Triticum aestivum L. cv. Chris) leaves accumulated plastid pigments at a high rate, developed chloroplasts with stacked thylakoids, and stored plastid starch when wetted on filter paper in light. A moderate water deficit of — 10 bars markedly reduced the accumulation of chlorophyll and carotenoids in the 8-day-old detached leaves during greening. δ-Aminolevulinic acid treatment of stressed leaf segments resulted in slightly increased pigment accumulations but benzyladenine application restored plastid pigment formation in stressed tissue to within 15% of the pigment content of the nonstressed detached leaves. The addition of δ-aminolevulinic acid to benzyladenine-treated stressed leaf segments improved both chlorophyll and carotenoid formation to nearly the amounts found in nonstressed leaf tissue. Stressed leaf sections developed plastids that were small, lacked starch, contained few thylakoids per granum, and possessed dilated thylakoids. Benzyladenine application to the stressed leaf segments did not restore normal plastid stacking but benzyladenine induced the formation of extended intergranal lamellae and stimulated pigment accumulations in both stressed and nonstressed detached leaves. Starch was absent in plastids of benzyladeninetreated leaf sections.  相似文献   

18.
The plastids of young dark-grown bean leaves, exposed to periodiclight are agranal, devoid of chlorophyll b and contain primarythylakoids and chlorophyll a. Transfer of these plants to continuousillumination results in synthesis of new chlorophyll a, chlorophyllb and grana. This study was done in order to study whether andhow the grana are formed from preexisting primary thylakoids.14C--aminolevulinic acid was used to label the chlorophyll aof the primary thylakoids, and its fate was studied after transferof the plants to continuous light. It was found that chlorophyll b and grana become 14C-labelled.The total radioactivity of chlorophyll b per bean increasedwith the parallel decrease of that of chlorophyll a. All subchloroplastfractions, obtained after digitonin disruption of chloroplasts,contained chlorophyll a of equal specific radioactivity. Thespecific radioactivity of chlorophyll b was lower than thatof chlorophyll a, and, in addition, it was lower in the granathan in the stroma lamellae fraction. The data suggest that chlorophyll b is formed from chlorophylla; the grana are formed by stacking of preexisting primary thylakoids;chlorophyll b is synthesized faster in the grana than the stromalamellae; the newly formed chlorophyll a molecules are distributedat random throughout the developing photosynthetic membraneand not on specific growing sites. (Received April 24, 1976; )  相似文献   

19.
The formation of buds in leaf and stem expiants derived from “aurea” mutant regenerants ofNicotiana tabacum (cv. John Williams Broadleaf, mutation Sulfur) was inhibited by dosages of 1 to 5 krad of γ-irradiation. The extent of the inhibition was proportional to the dosage of irradiation. In some eases, the stem expiants formed buds even after the application of 10 krad. In addition to “aurea” buds, green buds were also formed in both explants after-the irradiation with the dosages of 1 to 2.5 krad which continued to grow even after the trans plantation into garden soil.  相似文献   

20.
The adaptogenic effect of furostanol glycosides (FG) on biosynthesis of photosynthetic pigments in tomato plants (Lycopersicon esculentum Mill.) was studied under conditions of biotic stress caused by root-knot nematode (Meloidogyne incognita Kofoid et White). Treatment of plants with 5 × 10–4 M FG was accompanied by an increase in the rate of biosynthesis of pigments (particularly, chlorophyll b and carotenoids), which was observed against the background of a decrease in the relative contribution of -carotene and an increase in the relative contribution of pigments of the violaxanthin cycle (VXC) to the overall pool of carotenoids. It was suggested that FG stimulated phytoimmunity by shifting metabolism of carotenoids toward enhanced biosynthesis of VXC pigments. These pigments play a protective role and facilitate stabilization of the photosynthetic apparatus, which is particularly important under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号