首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

2.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

3.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

4.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

5.
Lithuanian patients with visual problems were clinically examined for retinitis pigmentosa (RP). A total of 33 unrelated families with autosomal dominant RP (adRP) were identified. Screening for mutations in the rhodopsin (RHO) and peripherin/RDS (RDS) genes was performed using DNA heteroduplex analysis. Direct DNA sequencing in the cases of heteroduplex formation showed the presence of the following mutations and polymorphisms in 14 adRP patients: RHO gene - Lys248Arg (1 case), and Pro347Leu (2 cases); RDS gene - Glu304Gln (12 cases), Lys310Arg (5 cases), and Gly338Asp (12 cases). The presence of these mutations (except Lys248Arg in the RHO gene) was confirmed by relevant restriction enzyme digestion. The frequency of the RDS gene mutations Glu304Gln and Gly338Asp was estimated to be 36.4%, while mutation Lys310Arg was less frequent (15.2%). These 3 RDS gene mutations appear to be polypeptide polymorphisms not related to adRP.  相似文献   

6.
To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.  相似文献   

7.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

8.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

9.
In the cross-linking reaction of lysozyme between Leu129 (alpha-COO-) and Lys13 (epsilon-NH3+) using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC), a side reaction of the peptide bond inversion from alpha to beta between Asp101 and Gly102 was greatly reduced by addition of beta-(1,4)-linked trimer of N-acetyl-D-glucosamine [(NAG)3]. When methylamine or 2-hydroxyethylamine was further added, the extent of the cross-link formation was decreased and the derivative where the alpha-carboxyl group of Leu129 was modified with the amine was newly obtained. On the other hand, when ammonia was added, the beta-carboxyl group of Asp119 instead of the alpha-carboxyl group was mainly amidated. From these results, the presence of a salt bridge between Asp119 and Arg125 besides that between Lys13 and Leu129, is proposed. Enzymatic activities of the derivatives prepared here indicated that the modification of the alpha-carboxyl group reduced the activity to approximately 90% of that of native lysozyme. Des-Leu129 lysozyme, which lacks Leu129, also showed approximately 90% of the activity of native lysozyme. Therefore, the salt bridge between Lys13 and Leu129 may play some role in maintaining the active conformation of lysozyme.  相似文献   

10.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

11.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

12.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

13.
Here we report the isolation of influenza virus A/turkey/Minnesota/833/80 (H4N2) with a mutation at the catalytic residue of the neuraminidase (NA) active site, rendering it resistant to the novel NA inhibitor 4-guanidino-Neu5Ac2en (GG167). The resistance of the mutant stems from replacement of one of three invariant arginines (Arg 292-->Lys) that are conserved among all viral and bacterial NAs and participate in the conformational change of sialic acid moiety necessary for substrate catalysis. The Lys292 mutant was selected in vitro after 15 passages at increasing concentrations of GG167 (from 0.1 to 1,000 microM), conditions that earlier gave rise to GG167-resistant mutants with a substitution at the framework residue Glu119. Both types of mutants showed similar degrees of resistance in plaque reduction assays, but the Lys292 mutant was more sensitive to the inhibitor in NA inhibition tests than were mutants bearing a substitution at framework residue 119 (Asp, Ala, or Gly). Cross-resistance to other NA inhibitors (4-amino-Neu5Ac2en and Neu5Ac2en) varied among mutants resistant to GG167, being lowest for Lys292 and highest for Asp119. All GG167-resistant mutants demonstrated markedly reduced NA activity, only 3 to 50% of the parental level, depending on the particular amino acid substitution. The catalytic mutant (Lys292) showed a significant change in pH optimum of NA activity, from 5.9 to 5.3. All of the mutant NAs were less stable than the parental enzyme at low pH. Despite their impaired NA activity, the GG167-resistant mutants grew as well as parental virus in Madin-Darby canine kidney cells or in embryonated chicken eggs. However, the infectivity in mice was 500-fold lower for Lys292 than for the parental virus. These findings demonstrate that amino acid substitution in the NA active site at the catalytic or framework residues, followed by multiple passages in vitro, in the presence of increasing concentrations of the NA inhibitor GG167, generates GG167-resistant viruses with reduced NA activity and decreased infectivity in animals.  相似文献   

14.
Postprandial changes of Arg, Leu, Val, Ala, Asp, Glu, Gly, Pro and Tau as well as activities of three enzymes of the transdeamination system in the midgut mucosa and, for comparison, in the liver of freshwater and seawater acclimated Oncorhynchus mykiss were studied. In the mucosa a postprandial increase of Arg, Leu, Val, Ala, Asp, Glu, Gly and Pro occurred. In contrast, only the postprandial Arg level increased strongly in the liver. Levels of Leu, Val, Ala, Asp, Glu, Gly, Pro and Tau remained stable. Concentrations of Ala, Asp, Glu and Pro are higher in the liver than the mucosa. Tau is the most important osmotic effector in both organs, but its concentration is much lower in the liver. Its postprandial concentrations remained stable in both tissues but were significantly higher in seawater trout. The trend of a stronger postprandial rise of Arg, Leu, Val, Ala, Asp, Glu, Gly and Pro levels in seawater trout than in freshwater trout was shown. In mucosa tissue aspartate aminotransferase activities were higher in seawater trout. Ratios of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase are similar to those of the gills.  相似文献   

15.
Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A) that preferentially hydrolyzes amino acid-p-nitroanilide and -beta-naphthylamide substrates with N-terminal Leu, Met and Arg residues. To determine the substrate specificity of LAP-A on more natural substrates, the rates of hydrolysis of 60 dipeptide and seven tripeptide substrates were determined. For comparison, the specificities of the porcine and Escherichia coli LAPs were evaluated in parallel. Several marked differences in substrate specificities for the animal, plant and prokaryotic LAP enzymes were observed. Substrates with variable N-terminal (P1) residues (Xaa) were evaluated; these substrates had Leu or Gly in the penultimate (P1') position. The plant, animal, and prokaryotic LAPs hydrolyzed dipeptides with N-terminal nonpolar aliphatic (Leu, Val, Ile, and Ala), basic (Arg), and sulfur-containing (Met) residues rapidly, while P1 Asp or Gly were cleaved inefficiently from peptides. Significant differences in the cleavage of dipeptides with P1 aromatic residues (Phe, Tyr, and Trp) were noted. To systematically evaluate the impact of the P1' residue on cleavage of dipeptides, three series of dipeptides (Leu-Xaa, Gly-Xaa, and Arg-Xaa) were evaluated. The P1' residue strongly influenced hydrolysis of dipeptides and the magnitude of its effect was dependent on the P1 residue. P1' Pro, Asp, Lys and Gly slowed the hydrolysis rates of the tomato LAP-A, porcine LAP, and E. coli PepA markedly. Analysis six Arg-Gly-Xaa tripeptides showed that more diversity was tolerated in the P2' position. P2' Arg inhibited tripeptide cleavage by all three enzymes, while P2' Asp enhanced hydrolysis rates for the porcine and prokaryotic LAPs.  相似文献   

16.
Rapid quench experiments at 25 degrees C were carried out on selected mutants of the sarco(endo)plasmic reticulum Ca(2+)-ATPase to assess the kinetics of the conformational changes of the dephosphoenzyme associated with ATP binding/phosphoryl transfer and the binding and dissociation of Ca(2+) at the cytoplasmically facing transport sites. The mutants Gly(233) --> Glu, Gly(233) --> Val, Pro(312) --> Ala, Leu(319) --> Arg, and Lys(684) --> Arg differed conspicuously with respect to the behavior of the dephosphoenzyme, although they were previously shown to display a common block of the transformation of the phosphoenzyme from an ADP-sensitive to an ADP-insensitive form. The maximum rate of the ATP binding/phosphoryl transfer reaction was reduced 3.6-fold in mutant Gly(233) --> Glu and more than 50-fold in mutant Lys(684) --> Arg, relative to wild type. In mutant Leu(319) --> Arg, the rate of the Ca(2+)-binding transition was reduced as much as 10-30-fold depending on the presence of ATP. In mutants Gly(233) --> Glu, Gly(233) --> Val, and Pro(312) --> Ala, the rate of the Ca(2+)-binding transition was increased at least 2-3-fold at acid pH but not significantly at neutral pH, suggesting a destabilization of the protonated form. The rate of Ca(2+) dissociation was reduced 12-fold in mutant Pro(312) --> Ala and 3.5-fold in Leu(319) --> Arg, and increased at least 4-fold in a mutant in which the putative Ca(2+) liganding residue Glu(309) was replaced by aspartate. The data support a model in which Pro(312) and Leu(319) are closely associated with the cation binding pocket, Gly(233) is part of a long-range signal transmission pathway between the ion-binding sites and the catalytic site, and Lys(684) is an essential catalytic residue that may function in the same way as its counterpart in the soluble hydrolases belonging to the haloacid dehalogenase superfamily.  相似文献   

17.
Carboxypeptidase D (CPD) contains three domains with homology to other metallocarboxypeptidases. To further characterize the various domains, we constructed a series of point mutants with a critical active site Glu of duck CPD converted to Gln. The proteins were expressed in the baculovirus system, purified to homogeneity, and characterized. Point mutations within both the first and second domains eliminated enzyme activity, indicating that the third domain is inactive toward dansyl-Phe-Ala-Arg. CPD removed only the C-terminal Lys or Arg from peptides, with the first domain more efficient toward Arg and the second domain more efficient toward Lys. Peptides containing Pro in the penultimate position were poorly cleaved by either domain. Cleavage of a peptide with Ala in the penultimate position was most efficient, with the relative order Ala >/= Met > Ser, Phe > Tyr > Trp > Thr >/= Gln, Asp, Leu, Gly > Pro for CPD with both domains active. There were only minor differences between the first and the second domains regarding the influence of the penultimate amino acid. The first domain was optimally active at pH 6.3-7.5, whereas the second domain was optimally active at pH 5. 0-6.5. Thus, the first and second carboxypeptidase domains have complementary enzyme activities. Furthermore, the finding that CPD with both domains active shows a broad activity to a wide range of substrates is consistent with a role for this enzyme in the processing of many proteins that transit the secretory pathway.  相似文献   

18.
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.  相似文献   

19.
Despite increased awareness and diagnostic facilities, 70–80% of the haemophilia A (HA) patients still remain undiagnosed in India. Very little data is available on prevalent mutations in HA from this country. We report fifty mutations in seventy one Indian HA patients, of which twenty were novel. Ten novel missense mutations [p.Leu11Pro (p.Leu-8Pro), p.Tyr155Ser (p.Tyr136Ser), p.Ile405Thr (p.Ile386Thr), p.Gly582Val (p.Gly563Val) p.Thr696Ile (p.Thr677Ile), p.Tyr737Cys (p.Tyr718Cys), p.Pro1999Arg (p.Pro1980Arg), p.Ser2082Thr (p.Ser2063Thr), p.Leu2197Trp (p.Leu2178Trp), p.Asp2317Glu (p.Asp2298Glu)] two nonsense [p.Lys396* (p.Lys377*), p.Ser2205* (p.Ser2186*)], one insertion [p.Glu1268_Asp1269ins (p.Glu1249_Asp1250)] and seven deletions [p.Leu882del (p.Leu863del), p.Met701del (p.Met682del), p.Leu1223del (p.Leu1204del), p.Trp1961_Tyr1962del (p.Trp1942_Tyr1943del) p.Glu1988del (p.Glu1969del), p.His1841del (p.His1822del), p.Ser2205del (p.Ser2186del)] were identified. Double mutations (p.Asp2317Glu; p.Thr696Ile) were observed in a moderate HA case. Mutations [p. Arg612Cys (p.Arg593Cys), p.Arg2326Gln (p.Arg2307Gln)] known to be predisposing to inhibitors to factor VIII (FVIII) were identified in two patients. 4.6% of the cases were found to be cross reacting material positive (CRM+ve). A wide heterogeneity in the nature of mutations was seen in the present study which has been successfully used for carrier detection and antenatal diagnosis in 10 families affected with severe to moderate HA.  相似文献   

20.
The formation of mutagens by amino-carbonyl reactions of 20 kinds of amino acid and sugars after heating at 100 degrees C for 10 h was examined by the Ames test. The browned solutions of Gly, Ala, Val, Leu, Ile, Ser, Thr, Gln, Lys X HCl, Arg, Phe, Cys, Met and Pro with Glc caused mutation of Salmonella typhimurium TA100 and/or TA98 with or without S9 mix. The presence of S9 mix increased the mutagenic activity of the browned solutions of Cys and Phe with Glc on TA100 and of those of Gly, Ala, Val, Ile and Cys on TA98, but decreased the activity of other solutions. No revertants of Salmonella were induced by the browned solutions of Trp, Tyr, Asp, Asn, Glu and (Cys)2 with Glc. Among positive browned solutions, Cys, Lys, Arg and Phe had the stronger activity, but their activity was weak compared with that of pyrolysates or chemical mutagens such as Trp-P-1, Trp-P-2 and 4-nitroquinoline-N-oxide. The mutagenic activity of the browned solutions increased with prolongation of heating time and varied with the pH of the reaction mixture. Fru, Gal, Ara, Xyl, Man, Lac and Suc also had the ability to form mutagens in the browning reactions with amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号