首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The present study was designed to address the physiological role played by cAMP on gap junction (GJ) mediated communications between oocyte and cumulus cells during in vitro maturation. Cyclic AMP was stimulated by different collection and maturation media known to induce different rates of nuclear maturation and developmental competence as well as different levels of cumulus expansion. Cumulus-oocyte complexes (COCs) were matured for 0, 3, 7, 12, 18, and 24 h in the absence of stimulation or in the presence of serum and gonadotropins (fetal bovine serum+human menopausal gonadotropins [FCS+hMG]) or 0.01 microg/ml of invasive adenylate cyclase (iAC). For each time point, intracellular cAMP concentration ([cAMP]i) was determined either in the whole COC or oocyte after cumulus cell removal. GJ functional status was analyzed by microinjection of Lucifer yellow fluorescent dye in cumulus-enclosed oocytes and by immunohistochemical localization of connexin 43 (Cx43). In the absence of stimulation, [cAMP]i in COC and oocyte was lower than in other groups, and communications declined after 3 h of culture. In the FCS+hMG group, [cAMP]i increased significantly in COC, with a peak between 3 and 7 h that was temporally correlated with the beginning of the cumulus expansion process, which occurred only in this group and with the termination of the communications. COC matured in the presence of iAC showed a moderate increase of [cAMP]i during all of the maturation times as well as a prolongation of oocyte-cumulus cell communications. The immunohistochemical localization of Cx43 confirmed the delay in connexons protein turnover in iAC-treated COCs. Our results show that cumulus expansion and oocyte developmental competence are induced by different levels of cAMP and that its intracellular concentration may affect cell coupling between oocyte and cumulus cells. We hypothesize that the higher developmental competence of COCs matured in the presence of iAC could be achieved through a moderate increase of intracellular cAMP, which in turn determines a prolongation of communications between the two cell types.  相似文献   

2.
3.
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus?oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two‐cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.  相似文献   

4.
5.
Cumulus cells of the oocyte play important roles in in vitro maturation and subsequent development. One of the routes by which the factors are transmitted from cumulus cells to the oocyte is gap junctional communication (GJC). The function of cumulus cells in in vitro maturation of porcine oocytes was investigated by using a gap junction inhibitor, heptanol. Cumulus-oocyte complexes (COCs) were collected from the ovaries of slaughtered gilts by aspiration. After selection of COCs with intact cumulus cell layers and uniform cytoplasm, they were cultured in a medium with 0, 1, 5, or 10 mM of heptanol for 48 h. After culture in vitro, one group of oocytes was assessed for nuclear maturation and glutathione (GSH) content, and another group was assigned to in vitro fertilization and assessed for the penetrability of oocytes and the degree of progression to male pronuclei (MPN) of penetrated spermatozoa. At the end of in vitro maturation, the oocytes reached metaphase II at a high rate (about 80%) regardless of the presence of heptanol at various concentrations. Cumulus cell expansion and the morphology of oocytes cultured in the medium with heptanol were similar to those of control COCs matured without heptanol. The amount of GSH in cultured oocytes tended to decrease as the concentration of heptanol in the medium was increased. Although there was no difference in the rates of penetrated oocytes cultured in media with different concentrations of heptanol, the proportion of oocytes forming MPN after insemination decreased significantly (P < 0.01) at all concentrations tested. A higher rate of sperm (P < 0.01) failed to degrade their nuclear envelopes after penetration into the oocytes that were treated with heptanol. GJC between the oocyte and cumulus cells might play an important role in regulating the cytoplasmic factor(s) responsible for the removal of sperm nuclear envelopes as well as GSH inflow from cumulus cells.  相似文献   

6.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

7.
Oocyte maturation and somatic cell nuclear transfer (NT) studies conducted in the domestic cat can provide valuable insights that are relevant to the conservation of endangered species of felids. The present investigation focuses on the in vitro maturation (IVM) of domestic cat oocytes stimulated by insulin-like growth factor-I (IGF-I) and their possible use as recipient cytoplasts for somatic cell NT. In Experiment I, the effects of IGF-I on cat oocyte IVM were monitored. Cumulus-oocyte complexes (COCs) were recovered in TALP-HEPES medium following ovarian follicular aspiration and were classified under a stereomicroscope into four grades using criteria based on cumulus cell investment and the uniformity of ooplasm. The COCs were either cultured in Dulbecco's modified Eagle medium (DMEM) alone as a control group or supplemented with 100 ng/ml IGF-I. After culturing for 32-34 h, oocytes were denuded and maturation rate was evaluated by observing the extrusion of the first polar body and staining with aceto-orcein. The percentages of maturation of Grades 1 and 2 oocytes were significantly increased (P<0.05) in IGF-I supplemented medium compared with medium alone (85.8 versus 65.5 and 70.3 versus 51.8, respectively) whereas the maturation rates of Grades 3 and 4 oocytes were not different. The IVM of Grade 1 oocytes was significantly higher (P<0.05) than for all other grades in both control and experimental groups. In Experiment II, the in vitro development of cat NT embryos using cumulus cells, fetal or adult fibroblasts as donor nuclei was investigated. The IVM oocytes in medium containing IGF-I were enucleated and fused with cumulus cells, fetal or adult fibroblasts between passages 2 and 4 of culture. Reconstructed embryos were cultured and monitored every 24h for progression of development through Day 9. There was no significant difference in the percentage of fusion of NT embryos using different donor nuclei whereas the cleavage rates of NT embryos reconstructed with fetal fibroblasts and cumulus cells were significantly higher (P<0.05) than those reconstructed with adult fibroblasts (72.5 and 70.7% versus 54.8%, respectively). Development of NT embryos reconstructed with adult fibroblast to the morula stage was significantly lower (P<0.05) compared with cumulus cell or fetal fibroblast donor cells (25.8% versus 37.9 or 47.5%, respectively). However, no difference was observed in development to the blastocyst stage. These results demonstrated that IGF-I promoted the IVM of domestic cat oocytes. The enucleated IVM oocytes could be used as recipient cytoplasm for fetal and adult somatic cell nuclei resulting in the production of cloned cat embryos.  相似文献   

8.
9.
SIRT2, the predominantly cytosolic sirtuin, plays important role in multiple biological processes, including metabolism, stress response, and aging. However, the function of SIRT2 in gap junction intercellular communications (GJICs) of cumulus-oocyte complexes (COCs) is not yet known. The purpose of the present study was to evaluate the effect and underlining mechanism of SIRT2 on GJICs in COCs. Here, we found that treatment with SIRT2 inhibitors (SirReal2 or TM) inhibited bovine oocyte nuclear maturation. Further analysis revealed that SIRT2 inactivation disturbed the GJICs of COCs during in vitro maturation. Correspondingly, both the Cx43 phosphorylation levels and MEK/MER signaling pathways were induced by SIRT2 inhibition. Importantly, SIRT2-mediated Cx43 phosphorylation was completely abolished by treatment with MEK1/2 inhibitor (Trametinib). Furthermore, treatment with SIRT2 inhibitors resulted in the high levels of MEK1/2 acetylation. Functionally, downregulating the MER/ERK pathways with inhibitors (Trametinib or SCH772984) could attenuate the closure of GJICs caused by SIRT2 inactivation in partly. In addition, inhibition of SIRT2 activity significantly decreased the membrane and zona pellucida localization of Cx43 by upregulating the levels of Cx43 acetylation. Taken together, these results demonstrated a novel role that SIRT2 regulates GJICs via modulating the phosphorylation and deacetylation of Cx43 in COCs.  相似文献   

10.
Substantially less development to the blastocyst stage occurs in vitro than in vivo and this may be due to deficiencies in oocyte competence. Although a large proportion of bovine oocytes undergo spontaneous nuclear maturation, less is known about requirements for proper cytoplasmic maturation. Commonly, supraphysiological concentrations of FSH and LH are added to maturation media to improve cumulus expansion, fertilization and embryonic development. Therefore, various concentrations of porcine FSH (pFSH) and recombinant human FSH (rhFSH) were investigated for their effect on bovine cumulus expansion in vitro. Expression of FSHr, LHr and Cx43 mRNAs was determined in cumulus-oocyte complexes to determine whether they would be useful markers of oocyte competence. In serum-free media, only 1000 ng/ml pFSH induced marked cumulus expansion, but the effect of 100 ng/ml pFSH was amplified in the presence of 10% serum. In contrast, cumulus expansion occurred with 1 ng/ml rhFSH in the absence of serum. FSHr mRNA was highest at 0–6 h of maturation, then abundance decreased. Similarly, Cx43 mRNA expression was highest from 0–6 h but decreased by 24 h of maturation. However, the relative abundance of LHr mRNA did not change from 6–24 h of maturation. Decreased levels of FSHr, LHr and Cx43 mRNAs were detected in COCs of poorer quality. In conclusion, expansion of bovine cumulus occurred at low doses of rhFSH in serum-free media. In summary, FSHr, LHr and Cx43 mRNA abundance reflects COC quality and FSHr and Cx43 mRNA expression changes during in vitro maturation; these genes may be useful markers of oocyte developmental competence.  相似文献   

11.
The number of follicles undergoing atresia in an ovary is very high, and isolation of cumulus-oocyte complexes (COCs) from such atretic follicles may impair subsequent embryo development in vitro. Our aim was to study if stringent selection by morphological assessment of COCs can improve embryo development, and to evaluate whether oocyte diameter is related with apoptotic ratio in oocytes and blastocysts. COCs from slaughtered cattle were recovered by follicle aspiration and classified depending on oocyte diameter: (A) <110 microm; (B) 110-120 microm; (C) >120 microm. COCs were matured, fertilized and cultured in vitro. Early and late stages of apoptosis were detected by Annexin-V and TUNEL staining, respectively, in denuded oocytes, COCs and blastocysts. Immature oocytes from Group A showed higher apoptotic ratio assessed by TUNEL assay, and the COCs corresponding to this group also showed a higher proportion of apoptotic cumulus cells. After maturation, no differences were present in the incidence of apoptosis among oocytes from different groups, but COCs corresponding to the largest diameter showed less apoptotic cumulus cells. In addition, the percentage of apoptotic oocytes decreased during in vitro maturation in all groups. Apoptotic cell ratio (ACR) in blastocysts was not related to oocyte diameter. In conclusion, oocyte selection and oocyte morphological evaluation prior to maturation was not sufficient to select non-atretic oocytes. When oocyte diameter was used as an additional selection the embryonic developmental potential increased together with oocyte diameter, but this improvement was not related to a lower incidence of apoptosis in the largest oocytes.  相似文献   

12.
In developing follicles, cellular coupling within cumulus–oocyte complexes (COCs) creates a functional syncytium allowing for the passage of small molecules. In many species, intercellular coupling between granulosa cells results from the expression of connexin 43 (CX43 or Gja1) and the formation of gap junctional plaques. Previously, our lab has shown that oocytes with a higher developmental potential had higher CX43 expression in their cumulus cells compared with developmentally incompetent oocytes. All‐trans retinoic acid (ATRA) has been shown to increase CX43 expression in several different cell types. In this study we investigated the effect of ATRA treatment, during maturation, on CX43 expression and localization in cumulus cells and the developmental competence of bovine oocytes. COCs and granulosa cells exposed to ATRA during maturation had significantly higher CX43 expression and increased gap junctional coupling, respectively. In addition, there was a significant increase in the maturation, cleavage, and blastocyst rates in ATRA treated COCs. Data from these studies suggest that not only can CX43 be used as a biomarker for oocyte health, it can also potentially be manipulated using ATRA to increase the number of oocytes achieving developmental competence.  相似文献   

13.
《The Journal of cell biology》1995,131(5):1193-1203
Intercellular gap junction channels are thought to form when oligomers of connexins from one cell (connexons) register and pair with connexons from a neighboring cell en route to forming tightly packed arrays (plaques). In the current study we used the rat mammary BICR-M1Rk tumor cell line to examine the trafficking, maturation, and kinetics of connexin43 (Cx43). Cx43 was conclusively shown to reside in the Golgi apparatus in addition to sites of cell-cell apposition in these cells and in normal rat kidney cells. Brefeldin A (BFA) blocked Cx43 trafficking to the surface of the mammary cells and also prevented phosphorylation of the 42-kD form of Cx43 to 44- and 46-kD species. However, phosphorylation of Cx43 occurred in the presence of BFA while it was still a resident of the ER or Golgi apparatus yielding a 43-kD form of Cx43. Moreover, the 42- and 43-kD forms of Cx43 trapped in the ER/Golgi compartment were available for gap junction assembly upon the removal of BFA. Mammary cells treated with BFA for 6 h lost preexisting gap junction "plaques," as well as the 44- and 46-kD forms of Cx43 and functional coupling. These events were reversible 1 h after the removal of BFA and not dependent on protein synthesis. In summary, we provide strong evidence that in BICR-M1Rk tumor cells: (a) Cx43 is transiently phosphorylated in the ER/Golgi apparatus, (b) Cx43 trapped in the ER/Golgi compartment is not subject to rapid degradation and is available for the assembly of new gap junction channels upon the removal of BFA, (c) the rapid turnover of gap junction plaques is correlated with the loss of the 44- and 46-kD forms of Cx43.  相似文献   

14.
The aim of the present study was to examine the cumulus morphology and the oocyte chromatin quality of camel cumulus-oocyte complexes (COCs) at the time of recovery, and to monitor changes in oocyte chromatin configuration and apoptosis in cumulus cells from camel COCs during in vitro maturation (IVM) (0, 12, 24, 32, 36, 42, and 48 p.IVM) depending on pregnancy of donors. A total of 1023 COCs were isolated from sliced ovaries after slaughtering of 47 pregnant and 43 non-pregnant camels in an abattoir. The mean number of COCs per donor was 10.3 in pregnant and 12.5 in non-pregnant donors. The cumulus morphology of COCs was independent of the type of donor and was divided in COCs with compact (26.9 and 28%), dispersed (39.3 and 46%), corona radiata cumulus investment (27.9 and 21.7%) and without cumulus (6 and 4.2%), respectively for pregnant and non-pregnant donors. The highest proportion of COCs exhibited dispersed cumulus (P<0.05). Oocytes with meiotic stages of diplotene >50% were found only in compact (55 and 56.5%) and in dispersed COCs (58.4 and 60%), respectively for pregnant and non-pregnant donors. During IVM (0-48h) the first significant onset of specific meiotic stages were different in oocytes from pregnant donors: metaphase 1 (24-32h), metaphase 2 (36-42h), versus oocytes from non-pregnant donors: metaphase 1 (24h), metaphase 2 (32-48h) (P<0.05). The level of apoptotic cells in cumuli of matured COCs increased during IVM and was higher in matured COCs from non-pregnant donors for each time point during IVM (P<0.01). Camel oocytes meiosis during IVM is accompanied by a drastic increase of apoptosis in the surrounding cumulus cells 0-32 and 0-24h during IVM, respectively for pregnant and non-pregnant donors. The oocytes of pregnant camels require 36h of maturation to reach levels of >50% metaphase 2 stage in comparison to oocytes from non-pregnant donors where 32h are sufficient. The earlier onset of apoptosis in the COCs derived from non-pregnant donors possibly determines the faster progression of the oocytes through the final stages of meiosis.  相似文献   

15.
Porcine granulosa cells have been shown previously to both secrete and respond to insulin-like growth factor-I (IGF-I), suggesting an autocrine function of this peptide in the follicle. The present work was undertaken to determine possible effects of IGF-I on in vitro maturation, in vitro fertilization, and early embryonic development in culture. Granulosa and cumulus cell proliferation and differentiation based on 3H-thymidine uptake and progesterone production, respectively, were also assessed. The results showed that the cleavage rate of oocytes was markedly stimulated in a dose-dependent manner by the addition of IGF-I to the oocyte maturation medium (P < 0.05). Embryo development beyond the 8-cell stage was improved by IGF-I, reaching a maximum of 22% at 200 ng/ml IGF-I. Treatment with IGF-I after fertilization increased the percentage of total oocyte cleavage (P < 0.05) to approximately 52%, 43%, and 57% at, respectively, 25, 50, and 100 ng/ml IGF-I. 3H-thymidine incorporation by granulosa cells was significantly increased in cultures treated with FSH (3-fold) or IGF-I (6-fold) compared to the control. For the cumulus cells, FSH caused a similar increase (3-fold) in 3H-thymidine incorporation while IGF-I stimulated a 15-fold increase. Progesterone production by the granulosa cells was increased to the same extent by treatment with FSH or IGF-I (4.7 and 5.1-fold, respectively). However, for the cumulus cells, while FSH caused a marked 16-fold increase in progesterone production, IGF-I caused only a marginal increase of 2.5-fold. These results indicate a beneficial effect of IGF-I on in vitro porcine oocyte maturation and pre-implantation embryo development, suggesting a physiological role for IGF-I in vivo. The in vivo effect of IGF-I may be indirect via autocrine stimulation of cumulus and/or granulosa cells resulting in enhanced oocyte maturation and fertilization. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Glucose is an essential nutrient for mammalian cells. Emerging evidence suggests that glucose within the oocyte regulates meiotic maturation. However, it remains controversial as to whether, and if so how, glucose enters oocytes within cumulus-oocyte complexes (COCs). We used a fluorescent glucose derivative (6-NBDG) to trace glucose transport within live mouse COCs and employed inhibitors of glucose transporters (GLUTs) and gap junction proteins to examine their distinct roles in glucose uptake by cumulus cells and the oocyte. We showed that fluorescent glucose enters both cumulus-enclosed and denuded oocytes. Treating COCs with GLUT inhibitors leads to simultaneous decreases in glucose uptake in cumulus cells and the surrounded oocyte but no effect on denuded oocytes. Pharmacological blockade of of gap junctions between the oocyte and cumulus cells significantly inhibited fluorescent glucose transport to oocytes. Moreover, we find that both in vivo hyperglycemic environment and in vitro high-glucose culture increase free glucose levels in oocytes via gap junctional channels. These findings reveal an intercellular pathway for glucose transport into oocytes: glucose is taken up by cumulus cells via the GLUT system and then transferred into the oocyte through gap junctions. This intercellular pathway may partly mediate the effects of high-glucose condition on oocyte quality.  相似文献   

17.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

18.
The aim of this study was to examine the effects of Vero cells and other somatic cells on in vitro maturation of bovine oocytes. Both denuded oocytes and oocytes with intact cumuli (COCs) were cultured on monolayer of Vero cells, cumulus cells and granulosa cells. The effect of gonadotropins was investigated after the addition of gonadotropins to the culture medium. The evaluation using analysis of variance revealed that removal of cumulus cells generally reduced the percentage of oocytes completing their maturation in vitro and that this effect could not be overcome by the addition of gonadotropins to the culture medium. However, in individual experiments, when oocytes were co-cultured with different monolayers of somatic cells, Vero cells were able significantly support the maturation of denuded oocytes, and their beneficial effect was further enhanced by the addition of gonadotropins (76 vs 80.9%). We did not observe a similar effect after the co-culture of oocytes with a monolayer of cumulus cells (65.3 and 53%, respectively). Granulosa cell monolayer delayed maturation in the both COCs and denuded oocytes (10.5 and 16.5%, respectively). In vitro fertilization was successful in most of the experimental groups. However, when denuded oocytes were cultured without any somatic cell support, they did not decondense the penetrated sperm head after in vitro fertilization. This study demonstrates that 1) Vero cells beneficially affect the in vitro maturation of bovine oocytes; 2) cumulus cells in the form of monolayer lose their beneficial influence on in vitro maturation of bovine oocytes; and 3) granulosa cells and FSH and LH alone (without somatic cells) do not show positive effects on in vitro maturation of bovine oocytes.  相似文献   

19.
To determine the role of cumulus cells in oocyte maturation, we carried out an investigation on the effects of addition of cumulus cells to the maturation medium on the developmental competence of corona-enclosed oocytes and oocytes denuded from their somatic cells. The addition of cumulus cell (1.6 x 10(6) cells/mL) improved the development of bovine corona-enclosed oocytes, however, addition of a similar number of cumulus cells as cumulus-oocyte-complexes (COCs, cumulus cell density: 4.2 x 10(6) cells/mL) had no effect on the development of oocytes denuded from their somatic cells. To determine if corona-enclosed oocytes can obtain developmental competence without the addition of extra cumulus cells, the effects of cell density during in vitro maturation on the developmental competence were studied. A density of 1.6 to 3.2 x 10(6) cumulus cells/mL was the most effective for in vitro maturation of oocytes with intact gap junctions. The effects of the medium conditioned by COCs on the developmental competence of oocytes was also examined. It was demonstrated that COC-conditioned medium improved the development of bovine oocytes to the blastocyst stage. These data suggest that the developmental competence of bovine oocytes surrounded with corona cells is supported in a cell density-dependent manner in the maturation medium. In addition, the data indicate that cumulus cells benefit bovine oocyte development either by secreting soluble factors which induce developmental competence or by removing an embryo development-suppressive component from the medium.  相似文献   

20.
Effect of 17beta-estradiol on the in vitro maturation of bovine oocytes   总被引:2,自引:0,他引:2  
Although 1 microg/ml of 17beta-estradiol (E2) is often used in routine in vitro maturation (IVM) and in vitro fertilization (IVF), its effect remains controversial. The objective of our study was to investigate the effects of E2 on bovine oocyte IVM and subsequent embryo development, using a defined medium. Bovine cumulus oocyte complexes (COCs), aspirated from 2 to 8 mm follicles of slaughterhouse ovaries, were matured in TCM199 in the presence of 1 microg/ml E2 with or without 0.05 IU/ml recombinant hFSH. Cultures without E2, FSH or both served as controls. COCs were matured for 22 h at 39 degrees C in a humidified atmosphere of 5% CO2 in air. To investigate the effect of E2 with and without FSH on nuclear maturation, COCs were fixed after maturation and the nuclear stage was assessed following DAPI staining. Similarly, denuded oocytes (DO) were matured in the presence of E2 and the nuclear stage assessed after 22 h. To investigate the effect of E2 with and without FSH during IVM on subsequent embryo development, in vitro matured COCs were fertilized in vitro and after removal of the cumulus cells, the presumed zygotes were cocultured on BRL monolayer for 11 days. At Day 4, the number of cleaved embryos, and at Days 9 and 11, the number of blastocysts, were assessed. Addition of 1 microg/ml E2 to TCM199 significantly decreased the percentage of Metaphase II (MII) compared to control (56.3 and 74.0%, respectively), and increased the percentage of nuclear aberrations compared to control (13.3 and 2.1%, respectively). The negative effect of E2 on nuclear maturation was stronger when DO were matured; 25.1 and 60.0% of the oocytes reached MII stage for the E2 and control groups, respectively. When COCs were matured in TCM199 supplemented with FSH, the addition of 1 microg/ml E2 did not influence the proportion of MII oocytes, although a higher percentage of nuclear aberrations as compared to control was observed. Presence of E2 during IVM also decreased the blastocyst rate (14.4 and 10.0% for control and E2 groups, respectively). However, when FSH was present, the addition of E2 had no effect on the cleavage rate and blastocyst formation (20.3 and 21.7% for control and E2 groups, respectively). In conclusion, supplementation of 1 microg/ml E2 to a serum free maturation medium negatively affects bovine oocyte nuclear maturation and subsequent embryo development. Although these effects are attenuated in the presence of FSH, we strongly suggest omission of E2 in routine maturation protocols of bovine oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号