首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Chiba  T Mohri 《Biochemistry》1989,28(7):2995-2999
Effects of phospholipids (PL's) and lyso-PL's on the conformation of the porcine intestinal calcium-binding protein (CaBP) were studied fluorometrically with 1-(dimethylamino)naphthalene-5-sulfonyl-(DNS-) labeled CaBP. The fluorescence intensity of DNS-labeled CaBP was much higher in the presence of excess EGTA than in its Ca2+-bound state. In the absence of free Ca2+ (with 1 mM EGTA) the fluorescence of the labeled CaBP was greatly enhanced by addition of lysophosphatidylcholine (lyso-PC), lysophosphatidylserine (lyso-PS), or lysophosphatidylinositol (lyso-PI). With addition of 25 microM Ca2+ the enhancement of the fluorescence by these lyso-PL's was depressed; especially that due to lyso-PC became small. Lysophosphatidylethanolamine (lyso-PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and mono- and dipalmitoylglycerols had no or much less effect on the fluorescence in the presence and absence of Ca2+. Lyso-PC attenuated in a concentration-dependent manner the quenching of the fluorescence of the DNS-CaBP by high temperatures and increase of ionic strength in the presence of EGTA. Lyso-PL's generally protected the CaBP from digestion with proteases in the presence of EGTA. These experimental results suggest that particular lyso-PL's have Ca2+-sensitive interaction with the porcine CaBP and induce conformation change of the CaBP molecules.  相似文献   

2.
We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.  相似文献   

3.
 苄基异喹啉类化合物拮抗钙调素(CaM)并抑制依赖CaM的环核苷酸磷酸二酯酶(CaM-PDE)的活力;用荧光测定法可检测它们与钙调素的相互作用。 Ca~(2+)存在下蝙蝙葛碱(D_1)及其衍生物(D_(14))在激发波长340nm处最大发射波长分别为463和455nm,结合CaM后荧光量子产率增加两倍多。它们同CaM的结合均依赖于Ca~(2+)。 本文制备的丹磺酰基CaM(D-CaM)结合Ca~(2+)后荧光最大发射峰值兰移(518→508nm),荧光强度增加22%。在Ca~(2+)存在下小檗胺衍生物E_6能与CaM结合并淬灭Ca~(2+)-D-CaM荧光。 单苄基异喹啉类化合物86040、86045能淬灭CaM的酪氨酸残基的特征荧光。 实验表明,CaM结合D_(14)、E_6、86040和86045的kd值分别为1.3、1.8、9.5和15.7μmol/L,所观察的化合物与CaM的亲和力的大小与它们拮抗CaM,抑制CaM-PDE的酶活力相对应。  相似文献   

4.
Endogenous calmodulin (CaM) in the EGTA-washed cerebral-cortical synaptosomal membrane (SM) preparation was estimated below 3 micrograms/ml protein by the semiquantitative immunoblot analysis (Natsukari, N., Ohta, H. and Fujita, M. (1989) J. Immunol. Methods 125, 159-166). Membrane-bound CaM was immunoelectron-microscopically demonstrated in EGTA-washed, non-treated (control), and Ca(2+)-treated cerebral-cortical synaptosomal membranes (SM) as well as for the SM enriched with added CaM. The density of CaM increased in the above order. CaM-dependent adenylate cyclase and CaM-dependent protein kinase II (CaM-kinase II) activities were restored, whereas the phosphodiesterase (PDE) activity was not affected by exogenous CaM over all the Ca2+ concentrations tested. Adenylate cyclase at pCa 6.2 was synergistically activated either by GTP and CaM or by CaM and beta-adrenergic agonist, (+/-)-isoproterenol, reflecting the intactness of signal transduction pathway in the SM. Also demonstrated were the presence of protein kinase A, CaM-kinase II, and their endogenous substrates in the SM. Based on 32P-autoradiography and 125I-CaM overlay data certain CaM-binding proteins such as CaM-kinase II and synapsin I were identified on SDS-PAGE. Ca(2+)-dependent and -independent CaMBPs were distinguished by 125I-CaM gel overlay with and without Ca2+. The former had bigger molecular size (greater than or equal to 49 kDa) than the latter (less than or equal to 34 kDa). Yield of Ca(2+)-dependent CaMBPs was not affected by Ca2+ concentration during preparation of the SM while that of Ca(2+)-independent CaMBPs was reduced by exposure to 100 microM Ca2+. In contrast with the CaMBPs of brain SM, those of enterocyte and eyrthrocyte plasma membranes especially, microvillous membrane of the enterocyte, showed quite distinct CaMBP profiles. The present findings suggested that the EGTA-washed SM preparation made a useful system for studying the role of CaM in the brain SM.  相似文献   

5.
Lysophosphatidylcholine (lyso-PC) and arachidonate are products of phosphatidylcholine hydrolysis by phospholipase A(2). In this study, the modulation of arachidonate release by exogenous lyso-PC in rat heart myoblastic H9c2 cells was examined. Incubation of H9c2 cells with lyso-PC resulted in an enhanced release of arachidonate in both a time- and dose-dependent fashion. Lyso-PC species containing palmitoyl (C(16:0)) or stearoyl (C(18:0)) groups evoked the highest amount of arachidonate release, while other lysophospholipid species were relatively ineffective. Cells treated with phospholipase A(2) inhibitors resulted in the attenuation of the enhanced arachidonate release in the presence of lyso-PC. Lyso-PC caused the translocation of phospholipase A(2) from the cytosol to the membrane fraction and induced an increase in Ca2+ flux from the medium into the cells. Nimodipine, a specific Ca(2+)-channel blocker, partially attenuated the lyso-PC-induced rise in intracellular Ca2+. Concurrent with Ca2+ influx, lyso-PC caused an enhancement of protein kinase C activity. The lyso-PC-induced arachidonate release was attenuated when cells were pre-incubated with specific protein kinase C and mitogen activated protein kinase kinase inhibitors. Taken together, these results strongly indicate that the lyso-PC-induced increases in levels of intracellular calcium and stimulation of protein kinase C lead to the activation of cytosolic phospholipase A(2) which results in the enhancement of arachidonate release in H9c2 cells.  相似文献   

6.
Certain lysophospholipids, lysophosphatidylcholine (lyso-PC) in particular, stimulated protein kinase C at low concentrations (less than 20 microM) but, conversely, inhibited it at high concentrations (greater than 30 microM). Protein kinase C stimulation by lyso-PC required the presence of phosphatidylserine (PS) and Ca2+ and was associated with a decreased Ka for PS and increased Ka for Ca2+ of the enzyme. Cardiolipin and phosphatidic acid could partially substitute for PS in supporting the stimulatory effect of lyso-PC. Lyso-PC also biphasically regulated protein kinase C activated by diolein. Of several synthetic lyso-PC preparations tested, the oleoyl, myristoyl and palmitoyl derivatives were most active. Data from the Triton X-100 mixed micellar assay indicated that 1.4 and 14.0 mol of lyso-PC/micelle produced a maximal stimulation and a complete abolishment of the stimulation of protein kinase C, respectively. Protein kinase C stimulation by lyso-PC, with a pH optimum of about 7.5, was observed for phosphorylation of histone H1, myelin basic protein, and the 35- and 47-kDa proteins from the rat brain, but not for that of other histone subfractions and protamine. Lyso-PC acted synergistically with diacylglycerol in stimulating protein kinase C, whereas the stimulation by lyso-PC was additive to that by oleic acid. Protein kinase C inhibitors (alkyllysophospholipid, sphingosine, tamoxifen, and polymyxin B) inhibited more potently the protein kinase C activity stimulated by PS/Ca2+/lyso-PC than that stimulated by PS/Ca2+. The stimulatory and inhibitory effects of lyso-PC were not observed for myosin light chain kinase and cAMP-dependent protein kinase, indicating a specificity of its actions. The present findings suggested that lyso-PC, likely derived from membrane PC by the action of phospholipase A2, might play a role in signal transduction via a dual regulation of protein kinase C, and that it could further modulate the enzyme and hence the cellular activity by interplaying with diacylglycerol and unsaturated fatty acid, the two other classes of cellular mediators also shown to be activators of protein kinase C.  相似文献   

7.
CaMBP, a peptide corresponding to the 3614-3643 calmodulin (CaM) binding region of the ryanodine receptor (RyR1), is known to activate RyR1 Ca2+ channel. To analyze the mechanism of channel regulation by the CaMBP-RyR1 interaction, we investigated a), CaMBP binding to RyR1, b), induced local conformational changes in the CaMBP binding region of RyR1 using the fluorescent conformational probe badan attached to CaMBP (CaMBP-badan), and c), effects of “a” and “b” on SR Ca2+ release. We also monitored the interaction of CaMBP-badan with CaM and a peptide corresponding to the Met3534-Ala4271 region of RyR1 (R3534-4271) as a control. At lower peptide concentrations (≤15 μM), CaMBP binding to RyR1 increased the intensity of badan fluorescence emission at a shorter wavelength (the state resembling CaMBP-badan/Ca-CaM) and induced Ca2+ release. Further increase in CaMBP concentration (up to ∼50 μM) produced more binding of CaMBP accompanied by further increase in the badan fluorescence emission but at a longer wavelength (the state resembling CaMBP-badan/apo-CaM) and inhibited Ca2+ release. Binding of CaMBP-badan to R3534-4271 increased the intensity of badan fluorescence, showing the similar concentration-dependent red-shift of the emission maximum. It is proposed that CaMBP interacts with two classes of binding sites located in the Met3534-Ala4271 region of RyR1, which activate and inhibit the Ca2+ channel, respectively.  相似文献   

8.
Two spectroscopic techniques, circular dichroism and steady-state fluorescence, were employed in order to study conformational changes of the purified, detergent-solubilized (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes. Circular dichroism (CD) spectra in the peptide region were obtained from the purified (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes with the aim to investigate the secondary structure of the enzyme in the presence of calmodulin (CaM) or phosphatidylserine (PS), as well as in the E1 and E2 states. The E1 conformation was stabilized by 10 microM free Ca2+, while the E2 conformation was stabilized by 0.1 mM ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). It was found that the E1 and E2 states of the enzyme strikingly differed in their secondary structure (66% and 46% of calculated alpha-helix content, respectively). In the presence of Ca2+, PS decreased the helical content of the ATPase to 61%, while CaM to 55%. Quenching of intrinsic fluorescence of (Ca2+-Mg2+)-ATPase by acrylamide, performed in the presence of Ca2+, gave evidence for a single class of tryptophan residues with Stern-Volmer constant (KSV) of 10 M-1. Accessibility of tryptophan residues varied depending on the conformational status of the enzyme. Addition of PS and CaM decreased the KSV value to 7.6 M-1 and 8.5 M-1, respectively. In the absence of Ca2+, KSV was 7.0 M-1. KI and CsCl were less effective as quenchers. The fluorescence energy transfer between (Ca2+-Mg2+)-ATPase tryptophan residues and dansyl derivative of covalently labeled CaM occurred in the presence of EGTA, but was further promoted by Ca2+. It is concluded that the interaction of CaM and PS with (Ca2+-Mg2+)-ATPase results in different conformational states of the enzyme. CD and fluorescence spectroscopy allowed to distinguish these states from the E1 and E2 conformational forms of the ATPase.  相似文献   

9.
We have examined hydrophobic properties of Tetrahymena CaM using the uncharged probe, n-phenyl-1-naphthylamine (NPN) fluorescence. The maximal fluorescence intensity of Tetrahymena calmodulin (CaM) is less than 1/12 of that of the bovine brain CaM. In the phosphodiesterase activation, the potency of Tetrahymena CaM, which was represented by reciprocals of the quantity of CaM required for half-maximal activation of enzyme was 22.7% respectively, of that of the bovine brain CaM. Here, Tetrahymena CaM had less hydrophobic groups exposed in the presence of Ca2+. Then Ca2+-CaM dependent enzymes require much amount of Tetrahymena CaM, comparing with the bovine brain CaM.  相似文献   

10.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

11.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

12.
The role of extracellular Ca2+ in pancreatic acinar membrane damage (cellular injury) by nicotine, membrane-active agents (mellitin, snake venom and Ca2+ ionophore A23187) and secretagogues (CCK-8 and secretin) was investigated. Freshly isolated dispersed pancreatic acini from 18 h fasted adult rats were incubated with one of the aforementioned agents, in the absence and presence of Ca2+. Cellular injury was assessed by measuring the release of pulse-labeled 51Cr and LDH. In addition, release of amylase, trypsinogen and chymotrypsinogen was also determined. In the absence of Ca2+ nicotine (6 mM) caused a profound release of 51Cr and LDH as well as amylase, trypsinogen and chymotrypsinogen from the isolated pancreatic acini. Release of these enzymes and 51Cr decreased sharply with addition of increasing concentrations (0.25-5 mM) of Ca2+. Release of 51Cr and amylase by snake venom (50 micrograms/ml) was found to be 100 and 25% higher, respectively, in the absence of Ca2+ than in its presence. On the other hand, the Ca2+ ionophore A23187 (7 micrograms/ml) was found to be effective in releasing 51Cr and amylase only in the presence of Ca2+. CCK-8, (0.25nM), secretin (1 microM) and mellitin (0.5 microgram/ml) although significantly stimulated amylase secretion (225-350%) in the presence of Ca2+, none of the agents induced 51Cr release from acini, either in the absence or in the presence of extracellular Ca2+. It is concluded that the extracellular Ca2+ plays no specific role in cytotoxic injury in isolated pancreatic acini.  相似文献   

13.
T Shimizu  M Hatano  Y Muto  Y Nozawa 《FEBS letters》1984,166(2):373-377
We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.  相似文献   

14.
Spinach calmodulin (CaM) has been labeled at cysteine-26 with the sulfhydryl-selective probe 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) to produce MIANS-CaM. The interaction of MIANS-CaM with CaM binding proteins was studied by fluorescence enhancement accompanying the protein-protein interactions. MIANS-CaM bound to smooth muscle myosin light-chain kinase with a Kd of 9 nM, causing a 4.6-fold fluorescence enhancement. Caldesmon bound with a Kd of 250 nM, causing a 2-fold fluorescence enhancement. Calcineurin (CaN) bound to MIANS-CaM with a Kd less than 5 nM, causing an 80% increase in fluorescence. On the other hand, binding of the CaM antagonist drugs prenylamine and calmidazolium or the potent peptide antagonist melittin did not alter MIANS fluorescence. MIANS-CaM activated brain cGMP phosphodiesterase and CaN as effectively as unlabeled CaM. Spinach CaM was also labeled with three other sulfhydryl reagents, 6-acryloyl-2-(dimethylamino)naphthalene, (2,5-dimethoxy-4-stilbenyl)maleimide, and rhodamine X maleimide. CaN bound to the highly fluorescent rhodamine X maleimidyl-CaM with a Kd of 1.4 nM, causing a 25% increase in polarization. Both MIANS-CaM and rhodamine X-CaM were used to monitor the Ca2+ dependence of the interaction between CaM and CaN. Half-maximal binding occurred at pCa 6.7-6.8 in the absence of Mg2+, or at pCa 6.3 in the presence of 3 mM Mg2+. In both cases, the dependence of the interaction was cooperative with respect to Ca2+ (Hill coefficients of 1.7-2.0). Use of these fluorescent CaMs should allow accurate monitoring of CaM interactions with its target proteins and perhaps their localization within the cell.  相似文献   

15.
T Arazi  G Baum  W A Snedden  B J Shelp    H Fromm 《Plant physiology》1995,108(2):551-561
We previously provided what to our knowledge is the first evidence that plant glutamate decarboxylase (GAD) is a calmodulin (CaM)-binding protein. Here, we studied the GAD CaM-binding domain in detail. A synthetic peptide of 26 amino acids corresponding to this domain forms a stable complex with Ca2+/CaM with a 1:1 stoichiometry, and amino acid substitutions suggest that tryptophan-485 has an indispensable role in CaM binding. Chemical cross-linking revealed specific CaM/GAD interactions even in the absence of Ca2+. However, increasing KCI concentrations or deletion of two carboxy-terminal lysines abolished these interactions but had a mild effect on CaM/GAD interactions in the presence of Ca2+. We conclude that in the presence of Ca(2+)-hydrophobic interactions involving tryptophan-485 and electrostatic interactions involving the carboxy-terminal lysines mediate CaM/GAD complex formation. By contrast, in the absence of Ca2+, CaM/GAD interactions are essentially electrostatic and involve the carboxy-terminal lysines. In addition, a tryptophan residue and carboxy-terminal lysines are present in the CaM-binding domain of an Arabidopsis GAD. Finally, we demonstrate that petunia GAD activity is stimulated in vitro by Ca2+/CaM. Our study provides a molecular basis for Ca(2+)-dependent CaM/GAD interactions and suggests the possible occurrence of Ca(2+)-independent CaM/GAD interactions.  相似文献   

16.
The effects of various lipids on calmodulin interaction with Ca-dependent phosphodiesterase were investigated. Palmitic, myristic and stearic acids increased the enzyme activity; the degree of the enzyme activation by calmodulin was decreased thereby. Oleic acid produced a weak activating effect on phosphodiesterase but completely blocked calmodulin action. The effects of the fatty acids under study were reversible, the activation constant was equal to 10(-4)-5 X 10(-4) M. In the presence of Ca2+ phosphoinositides and fatty acids changed the fluorescence intensity of dansyl-labelled calmodulin; in the absence of Ca2+ the lipids did not affect protein fluorescence. The lipids had no influence on the protein affinity for Ca2+. During chromatography of phosphodiesterase on calmodulin-Sepharose the enzyme was eluted from the column both in the presence of EGTA and palmitic acid. It was concluded that fatty acids prevent the formation of the calmodulin - phosphodiesterase complex. This effects may both be due to the lipid binding to the enzyme and to calmodulin.  相似文献   

17.
B B Olwin  C H Keller  D R Storm 《Biochemistry》1982,21(22):5669-5675
Rabbit skeletal muscle troponin I was covalently labeled with N-dansylaziridine, resulting in a fluorescent labeled protein. This derivative (DANZTnI) and native troponin I (TnI) inhibited calmodulin (CaM) stimulation of bovine heart Ca2+-sensitive cyclic nucleodite phosphodiesterase with identical inhibition constants. Association of DANZTnI with calmodulin was monitored directly by changes in flourescence intensity in the presence of Ca2+ and by changes in fluorescence anisotropy in the absence of Ca2+. Quantitation of the affinity of calmodulin for calmodulin-binding proteins in both the presence and absence of Ca2+ is necessary for prediction of the extent of interaction of both Ca2+ and calmodulin-binding proteins with calmodulin in vivo. The dissociation constants for the DANZTnI-calmodulin-l4Ca2+ and DANZTnI-calmodulin complexes were 20 nM and 70 micrometers, respectively. These dissociation constants define a free energy coupling of-4.84 kcal/mol of troponin I for binding of Ca2+ and troponin I to calmodulin. The Ca2+ dependence for troponin I-calmodulin complex formation predicted from these experimentally determined parameters was closely approximated by the Ca2+ dependence for complex formation between troponin I and fluorescent 5-[[[(iodoacetyl)amino]ethyl]-amino]-1-napthalenesulfonic acid derivatized calmodulin as determined by fluorescence anisotropy. Complex formation occurred over a relatively narrow range of Ca2+ concentration, indicative of positive heterotropic cooperativity for Ca2+ and troponin I binding to calmodulin.  相似文献   

18.
Calmodulin (CaM) mediates the Ca(2+)-dependent activation of many enzyme systems in accordance with its cellular localization. We have described previously a muscarinic receptor-mediated translocation of CaM from membranes into the cytosol of SK-N-SH human neuroblastoma cells. To explore the potential targets (CaM-binding proteins, CaMBP) for CaM upon translocation, a photoreactive CaM derivative was introduced into living SK-N-SH cells using a scrape-loading technique. Scrape-loading incorporated rhodamine isothiocyanate-labeled CaM with an efficiency of 38%. CaM-diazopyruvamide (CaM-DAP), a Ca(2+)-dependent and CaM-specific probe, was also introduced into the cells. The muscarinic agonist carbachol stimulated a translocation of CaM from membranes into cytosol in CaM-DAP-loaded SK-N-SH cells. Upon photochemical cross-linking, cross-linked adducts of CaM-CaMBP were detected by immunoblotting with anti-CaM antibody. Carbachol stimulated increased photoaffinity labeling of three proteins with relative adduct molecular masses of 70, 120, and 180 kDa. The time course of labeling for the 70- and 120-kDa adducts showed maximal increased by 15-30 min. The 180-kDa adduct displayed a slower time course of maximal labeling, with increases maintained for 2-4 h. Subtracting the molecular mass of CaM, carbachol stimulated binding to CaMBPs of 55, 105, and 163 kDa. Predominant cellular CaMBP were identified using a biotinylated CaM overlay procedure. Western blot analysis indicated the expression of specific CaM-dependent enzymes such as calcineurin, phosphodiesterase, the beta-isoform (rat brain) of CaM kinase II, and Ca(2+)-ATPase. Numerous cytoskeletal CaMBP were expressed such as microtubule-associated protein-2, spectrin, tubulin, caldesmon, adducin, and neuromodulin. Of the CaMBP expressed, phosphodiesterase, calcineurin, caldesmon, and adducin cross-linked with CaM-DAP in the loaded SK-N-SH cells. Carbachol stimulated the time-dependent CaM-DAP labeling of calcineurin and adducin. This study demonstrates the novel incorporation of a photoreactive CaM derivative into living cells, as well as muscarinic receptor-activated CaM-DAP interaction with several cellular CaMBP. We postulate that carbachol-stimulated CaM translocation in SK-N-SH cells may affect the activity of CaM-dependent enzymes and may alter aspects of cytoskeletal function.  相似文献   

19.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function.  相似文献   

20.
Calmodulin (CaM) is the major Ca2+ sensor in eukaryotic cells. It consists of four EF-hand Ca2+ binding motifs, two in its N-terminal domain and two in its C-terminal domain. Through a negative feedback loop, CaM inhibits Ca2+ influx through N-methyl-D-aspartate-type glutamate receptors in neurons by binding to the C0 region in the cytosolic tail of the NR1 subunit. Ca2+ -depleted (apo)CaM is pre-associated with a variety of ion channels for fast and effective regulation of channel activities upon Ca2+ influx. Using the NR1 C0 region for fluorescence and circular dichroism spectroscopy studies we found that not only Ca2+ -saturated CaM but also apoCaM bound to NR1 C0. In vitro interaction assays showed that apoCaM also binds specifically to full-length NR1 solubilized from rat brain and to the complete C terminus of the NR1 splice form that contains the C0 plus C2' domain. The Ca2+ -independent interaction of CaM was also observed with the isolated C-but not N-terminal fragment of calmodulin in the independent spectroscopic assays. Fluorescence polarization studies indicated that apoCaM associated via its C-terminal domain with NR1 C0 in an extended conformation and collapsed to adopt a more compact conformation of faster rotational mobility in its complex with NR1 C0 upon addition of Ca2+. Our results indicate that apoCaM is associated with NR1 and that the complex of CaM bound to NR1 C0 undergoes a dramatic conformational change when Ca2+ binds to CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号