首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primates play important roles as seed dispersers in many tropical ecosystems, such that studies of their seed dispersal services and impacts have gained interests among primatologists and ecologists in the past few decades. In this article, we first report that the number of scientific publications on primate seed dispersal has increased rapidly over the past 20 years, based on an extensive literature review. These publications encompass diverse primate taxa from the four geographic regions where they naturally occur. We then summarize the contributions to this Special Issue, which reflect on these progresses. Finally, we provide new directions for the next decade.  相似文献   

2.
Primates are now known to possess a keen sense of smell that serves them in various contexts, including feeding. Many primate species are frugivorous and provide essential seed dispersal services to a variety of plants. Studies of pollination ecology, and recently seed dispersal ecology, indicate that animal mutualist behavior exerts selection pressures that drive changes in flower and fruit traits. As a result, the use of olfaction in in primate feeding ecology may have affected the evolution of fruit odor in species that rely on primate seed dispersal. However, this hypothesis is seldom tested. Here, we summarize the available information on how primates may have affected the evolution of fruit odor. We ask what the chemistry of primate fruit odor may look like, what information fruit odor may convey, whether there are geographical differences in fruit odor, and what other factors may affect the odor of fruits consumed by primates. We identify many gaps in the available data and offer research questions, hypotheses, and predictions for future studies. Finally, to facilitate standardization in the field, we discuss methodological issues in the process of odor sampling and analysis.  相似文献   

3.
Primate seed dispersal is a vital, but complex, ecological process that involves many interacting agents and plays important roles in the maintenance of old-growth forest, as well as in the development of regenerating forest. Focusing primarily on African examples, in this article we briefly review the ecological process of primate seed dispersal, highlighting understudied and contentious topics, and then we discuss how our knowledge on primate seed dispersal can promote both forest restoration and primate conservation. Though it is frequently claimed that primates are critically important for the maintenance of diverse tropical forest ecosystems, we believe that more empirical evidence is needed to support this claim. Confounding factors can often be difficult to rule out and long-term studies extending beyond the seedling or sapling stage are very rare. In addition, though primates are critical for initial seed dispersal of many tree species, spatial and temporal variation in post-deposition processes, such as secondary seed dispersal and predation by rodents, can dramatically alter the initial patterns generated by primates. However, given the need for immediate conservation action to prevent further primate extinctions, we advocate that the knowledge about primate seed dispersal be used in formulating informed conservation plans. One prominent area where this knowledge will prove extremely valuable is in forest restoration efforts. To aid in the development of such efforts, we pose five questions, the answers to which will help facilitate forest restoration becoming a useful tool in strategies designed to conserve primates.  相似文献   

4.
Conservation efforts are often aimed at one or a few species. However, habitat sustainability relies on ecological interactions among species, such as seed dispersal. Thus, a community-scale conservation strategy may be more valuable in some settings. We describe communities of primary (primates) and secondary (dung beetles) seed dispersers from 5 sites in the Brazilian Amazon. We estimate community biomass of these taxa and, using multivariate ordination, examine the potential for natural reforestation at each site, given the communities of seed dispersers present. Since disturbed habitat is increasingly common and increasingly the focus of conservation efforts, we also examine differences among seed disperser communities between primary forest and secondary growth at each site. Analyses of faunal biomass in different localities and habitats indicate that secondary growth receives nearly as much use by primates as primary forest; given the dominant groups of dung beetles in secondary growth, disturbed habitat should show a pattern of seed burial that is clumped and deep. Areas with high biomass of Alouatta spp. and the large nocturnal dung beetle species may have the greatest potential for natural reforestation of secondary growth particularly for large seeded species. The data suggest that knowledge of the biomass of primary and secondary dispersing fauna facilitates predictions for the likelihood of disturbed habitat to regenerate and comparisons of sites in broader geographical areas e.g., Neotropical vs. Paleotropical forests.  相似文献   

5.
6.
啮齿类对植物种子的传播作用   总被引:21,自引:4,他引:17  
种子植物是固着生活的有机体 ,如果能成功地将种子扩散到适宜的生境 ,将会在生存竞争中获得优势。在长期的进化过程中 ,不同的植物依赖不同的媒介传播种子 ,如风传播 ,水传播 ,或自身的力量传播 (重力、弹爆力等 )。在很多情况下也依靠动物完成种子扩散 ,即所谓的动物传播。根据依赖的动物对象不同可以分为蚁传播 ,鸟传播 ,哺乳类传播 ,以及鱼传播 ,爬行类传播等。哺乳类中传播种子的类群主要包括翼手类 ,灵长类和啮齿类。由于能够飞行 ,热带食果实的蝙蝠(属翼手类 )对种子的传播作用最明显 ,研究得也最多 ,源于蝙蝠类的传播特称为chir…  相似文献   

7.
8.
蚁对植物种子的传播作用   总被引:4,自引:0,他引:4  
许多种子植物依靠动物传播种子 ,称为动物传播。根据动物类群的不同 ,可分为哺乳类传播 ,鸟传播 ,鱼传播 ,蚁传播等。鸟传播和蚁传播的研究近年取得了很大的进展 ,但国内在这方面研究较缺乏 ,作者已就鸟传播作了综述报道 ,现将蚁传播的研究综述报道如下。1 蚁与植物的相互关系蚁类属膜翅目 (Hymenoptera) ,蚁科 (Formici dae) ,典型的社会性昆虫。多数蚁类是肉食性的 ,以小动物或更小的蚁类为食 ,但也有很多蚁类是植物食性的。在大多数生态系统中均有蚁类分布 ,而且蚁类数量众多 ,在森林生态系统中每 1ha可达 6~10…  相似文献   

9.
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi, and although over 100 years have passed since the discovery of Chagas disease, it still presents an increasing problem for global public health. A plethora of information concerning the chronic phase of human Chagas disease, particularly the severe cardiac form, is available in the literature. However, information concerning events during the acute phase of the disease is scarce. In this review, we will discuss (1) the current status of acute Chagas disease cases globally, (2) the immunological findings related to the acute phase and their possible influence in disease outcome, and (3) reactivation of Chagas disease in immunocompromised individuals, a key point for transplantation and HIV infection management.  相似文献   

10.
啮齿动物的贮藏行为与植物种子的扩散   总被引:12,自引:3,他引:12  
绝大多数啮齿动物一方面取食大量的植物种子和果实,另一方面通过其贮食行为将植物种子和果实搬运到远离母树的地点,即扩散,并将它们分散埋藏在落叶下或浅表的土层中,从而影响种子和果实的时空分布,最后导致幼苗在有利的条件下发生和建成,实现植物更新。啮齿动物与植物种子和果实之间已广泛形成了互惠或协同进化的关系。啮齿动物的贮食行为主要通过以下几个过程对植物种子和果实的扩散产生影响:选择、搬运和埋藏以及随后对种子和幼苗存活和死亡的影响等。本综述了啮齿动物对植物种子和果实贮藏的研究结果,以期为进一步开展啮齿动物的贮食行为在植物种子和果实的扩散中的作用的研究提供参考。  相似文献   

11.
12.
13.
Daniel G. Wenny 《Biotropica》2000,32(2):327-337
Dispersal quality, as estimated by the cumulative effects of dispersal, germination, seed predation, and seedling survival, was examined for Beilschmiedia pendula (Lauraceae) in Monteverde, Costa Rica. I determined the pattern of dispersal by finding seeds deposited by birds, protected the seeds from seed predators with cages to assess germination and seedling survival, and examined seed predation rates with marked seeds. Seed predation, germination, and seedling survival were compared between seeds naturally dispersed by birds and seeds placed at randomly located sites. Approximately 70 percent of seeds dispersed by birds (N= 244) were deposited <10 m from crown edges of fruiting B. pendula trees, although some seeds were dispersed at least 70 m away. Larger seeds were more likely to be dispersed under or close to the parent trees, and larger seeds produced larger seedlings. Seed size was not correlated directly with seedling survival, but larger seedlings at three months were most likely to survive one year. Seed predation by mammals and insects and seedling mortality due to fungal pathogens were concentrated beneath the crowns of parent trees. Seedlings and saplings were more abundant beneath fruiting B. pendula trees, but individuals farther away were taller on average. Thus, dispersal is beneficial for B. pendula, but such benefits appear most pronounced at a small spatial scale; seeds dispersed >30 m from the crown edges actually had a lower probability of survival than those dispersed 10–20 m. Only 10 percent of B. pendula. seeds received high‐quality dispersal in terms of landing in the zone with the highest per seed probability of seedling survival 10–20 m from parental crowns.  相似文献   

14.
The incorporation of an animal-dispersed exotic plant species into the diet of native frugivores can be an important step to that species becoming invasive. We investigated bird dispersal of Lonicera maackii, an Asian shrub invasive in eastern North America. We (i) determined which species of birds disperse viable L. maackii seeds, (ii) tested the effect of gut passage on L. maackii seeds, and (iii) projected the seed shadow based on habitat use by a major disperser. We found that four native and one exotic bird species dispersed viable L. maackii seeds. Gut passage through American robins did not inhibit germination, but gut passage through cedar waxwings did. American robins moved mostly along woodlot edges and fencerows, leading us to project that most viable seeds would be defecated in such habitats, which are very suitable for L. maackii. We conclude that L. maackii has been successfully incorporated into the diets of native and exotic birds and that American robins preferentially disperse seeds to suitable habitat.  相似文献   

15.
Primate Ecology and Social Structure Vol. 1: Lorises, Lemurs and Tarsiers. Robert W. Sussman. Needham Heights. MA: Pearson Custom Publishing, 1999. 284 pp.
Primate Ecology and Social Structure Vol. 2: New World Monkeys. Robert W. Sussman. Needham Heights. MA: Pearson Custom Publishing, 2000. 207 pp.
Primate Ecology and Social Structure Vol. 3: Old World Monkeys and Apes. Robert W. Sussman. Needham Heights. MA: Pearson Custom Publishing, in press.  相似文献   

16.
17.
The Selection of Pollen and Seed Dispersal in Plants   总被引:1,自引:0,他引:1  
  相似文献   

18.
Abstract: On the basis of a recent checklist of plant diversity in páramos, diaspores collected from herbaria were studied for adaptations to dispersal on animals and by water. This study shows that the páramo flora has a relatively high percentage of genera with morphological adaptations to epizoochorous and to hydrochorous diaspore dispersal. Genera with hooked and straight appendages are present throughout the páramo belt, while their number decreases in the higher páramo zones. About half of the hydrochorous genera and one-third of the epizoochorous ones can be found throughout all páramo zones. The contribution of holarctic epizoochorous genera to the páramo flora seems to be greater than that of austral-antarctic genera, whereas in hydrochorous genera it is the reverse.  相似文献   

19.
Toucans (Ramphastidae) are highly frugivorous, widespread throughout the Neotropics, and travel long distances, thus likely providing dispersal for many tropical trees. Despite being large conspicuous members of the canopy and subcanopy bird community, their movement ecology has been little studied. To understand how these frugivores move through a lowland tropical forest, I tracked the movements of Ramphastos tucanus (White‐throated Toucan), Ramphastos vitellinus (Channel‐billed Toucan), and Pteroglossus pluricinctus (Many‐banded Araçari) in Yasuní National Park, Ecuador. The objectives of this study were to use radiotelemetry to estimate toucan home ranges, movement patterns, and potential seed dispersal distances. Using canopy nets, a total of 20 P. pluricinctus and three Ramphastos toucans were captured, radio‐tagged, and tracked over a 4‐yr period from 2001 to 2005. Average home range sizes were 191 and 86 ha for P. pluricinctus and Ramphastos toucans, respectively. The maximum travel distance in a single 30‐min tracking interval was 3665 m for P. pluricinctus and 3027 m for Ramphastos. Estimated dispersal distances of medium‐sized seeds ranged from 269 to 449 m. Large home range size and long‐distance movements indicate that toucans likely disperse seeds over a scale of hundreds of meters. This study is the first to estimate home range size of any toucan species in intact closed‐canopy forests. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

20.
The role of primates in seed dispersal is well recognized. Macaques (Macaca spp.) are major primate seed dispersers in Asia, and recent studies have revealed their role as seed dispersal agents in this region. Here, we review present knowledge of the traits that define the role of macaques as seed dispersers. The size of seeds in fruit influences whether macaques swallow (0.5–17.1 mm; median: 3.0), spit (1–37 mm; median: 7.6), or drop (8.2–57.7 mm; median: 20.5) them. Dispersal distances via defecation are several hundreds of meters (median: 259 m, range: 0–1300 m), shorter than those achieved by some mammals and birds in tropical and temperate regions. However, macaques disperse seeds by defecation at comparable distances to omnivorous carnivores, and further than passerines. Seed dispersal distance by spitting is much shorter (median: 20 m, range: 0–405 m) than by defecation. Among Asian primates, seed dispersal distances resulting from macaque defecation are shorter than those for gibbons and longer than those for langurs. The effects of seed ingestion on the percentage and speed of germination vary among both plant and macaque species. The degree of frugivory, fruit/seed handling methods, seed dispersal distance, microhabitats of dispersed seeds, and effects of dispersal on seed germination vary seasonally and interannually, and long-term studies of the ecological role of macaques are needed. Researchers have begun to assess the effectiveness of seed dispersal by macaques, secondary dispersal of seeds originally dispersed by macaques, and the effects of provisioning on seed dispersal. Future studies should also test the effects of social factors (such as age and rank), which have received little attention in studies of seed dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号