首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
海洋药物的抗病毒研究   总被引:15,自引:0,他引:15  
海洋由于其特殊的生态环境,包含着极丰富的生物来源的天然产物。自本世纪七十年代以来,已经从海藻类、海绵类、海鞘类、海星类、腹足动物、棘皮动物、腔肠动物、软体动物、珊瑚及海洋微生物等海洋生物中分离出一系列有抗病毒作用的天然化合物,其中有些结构类型已成为抗病毒药物研究的导向化合物。基本现代分离和分析技术的发展、新的实验模型的建立和在病毒学方面分子生物学研究的进展,从海洋生物中寻找新的抗病毒药物已步入一个  相似文献   

2.
中国海绵天然产物的研究   总被引:6,自引:0,他引:6  
据统计,从海洋生物的天然产物中获得药物或药物先导化合物的几率要比陆源生物高,海绵是海洋中除珊瑚以外的第二大生物资源。在海绵体内已发现许多高活性的化合物。中国海绵的研究主要集中在南海。南海海绵种类多、数量大,样品采集比较容易。本文统计调查了国内外海绵研究的现状,重点综述中国已研究的海绵种类、所获得的天然化合物以及相关产物的药理研究结果,对上述研究的特点与存在的不足进行了分析、讨论。  相似文献   

3.
萜类是海洋天然产物中最多的化合物,相当多的海洋萜类中含有卤素,这些卤代萜类大多是结构新颖、生理功能独特的生物活性物质。本文从国内外关于海洋萜类文献上搜集了有关海洋含卤萜类物质75种,并从其来源、结构类型及生物活性几方面进行了综述。这些化合物主要来源于海藻、海兔、海绵以及软珊瑚等海洋生物体。结构类型主要是倍半萜、二萜、单萜,三萜很少。大多含卤萜类具有细胞毒性,抗病毒、抗肿瘤及抗癌活性。  相似文献   

4.
天然小分子是中药、药用植物和天然药物的重要活性成分,是重要的药物资源研究方向和内容。大多数抗病毒药用植物,如夏枯草、黄芪和黄芩等,其活性成分均为天然小分子。抗病毒细胞因子为一类生物体中具有联系机体固有免疫和特异性免疫应答,捕杀或抑制体内病毒的小分子功能蛋白。近年来研究表明,植物中的多酚类、苷类以及寡糖等小分子化合物可调控机体内源抗病毒细胞因子的表达水平,继而作用于各类DNA或RNA病毒:一方面刺激机体产生抗病毒蛋白,直接捕杀病毒;另一方面联动机体固有免疫和获得性免疫应答,抑制病毒复制,抗病毒感染,清除被病毒感染的细胞。本文综述了近几十年药用植物天然小分子诱生机体细胞因子抗病毒的作用及机制研究,并由此提出这类活性天然小分子将可能成为新一类的抗病毒药物。  相似文献   

5.
海洋生物活性物质研究的若干进展   总被引:4,自引:0,他引:4  
众所周知,海洋生物资源及其丰富,种类繁多,数量庞大,呈现原始性和多样性特点。由于特殊的生态环境,海洋生物富含结构新颖、功能独特的高生物活性药用成分,可为新药研制开发提供相应的生物活性物质及重要先导化合物。海洋生物活性物质已成为人类医药宝库的重要来源。 海洋生物活性物质主要包括生物信息物质、生理活性物质、海洋生物毒素及生物功能材料等。目前,从海洋生物中已相继发现3000余种新型化合物,结构新  相似文献   

6.
海洋真菌因其特殊的生存环境和代谢机制而具有产生新型生物活性物质的潜力。近年来随着对海洋微生物研究的深入,从海洋真菌中发现了越来越多的具有抗肿瘤活性且结构新颖的天然产物。这些海洋真菌有的分离自海水、海泥或海洋沉积物,有的来自于海洋生物体。本文综述了近几年来从海洋真菌中分离得到的抗肿瘤天然产物的研究状况。  相似文献   

7.
海洋生物资源作为一种可持续利用的再生性资源,为我们提供了丰富的海洋特征化合物,特别是糖类化合物已经成为寻找和发现海洋创新药物的重要源泉。海洋糖类化合物依据其来源可分为:海洋植物来源、动物来源及微生物来源糖类分子,而不同来源的糖类化合物由于其结构存在较大差异,可被用于不同功能的糖类药物研发。综述了海洋来源糖类化合物的结构与活性特征、修饰与衍生方法以及相关糖类药物研发的最新进展。尽管我国有丰富的海洋生物资源,且在海洋糖药物研发方面走在世界前列,然而目前糖类药物开发仍面临巨大挑战,亟需有效解决糖类先导化合物的作用靶点、作用机制、药代动力学性质以及安全性评价等方面问题,进而建立完善的糖类药物研发技术平台,加快推进我国具有自主知识产权的海洋糖类创新药物的研究与开发。  相似文献   

8.
《生命的化学》2006,26(5):478-478
由中国生物化学与分子生物学会海洋生物化学与分子生物学分会会同中国药学会海洋药物专业委员会、生化药物专业委员会;中国生物工程学会海洋生物技术专业委员会;中国微生物学会海洋微生物学专业委员会和中华航海医学会海洋生物工程专业学会联合主办,中国人民解放军第二军医大学和大连交通大学共同承办的全国海洋生物技术与海洋药物学术会议(暨全国第九届海洋药物学术研讨会、全国第六届海洋生命活性物质与天然生化药物学研讨会、全国第二届海洋生物化学与分子生物学学术研讨会、全国第二届海洋微生物学术研讨会)于2005年8月2-6日在辽宁大连举行。来自全国23个省、市(包括台湾地区)的320位代表出席了本届研讨会。  相似文献   

9.
炎症是具有血管系统的活体组织应对刺激所发生的防御反应,在疾病的发生发展中具有重要作用,如关节炎、哮喘和阿尔茨海默病等。目前常用的抗炎药主要有非甾体类抗炎药、甾体类抗炎药和生物制剂,但由于甾体类和非甾体类抗炎药常伴有副作用问题、生物制剂价格较昂贵而受到一定限制。海洋是生物的重要栖息地,蕴藏着极其丰富的天然产物,随着近年来对海洋资源的开发,人们从海洋生物中提取出了许多具有抗炎活性的天然产物,如萜类、甾醇类、多糖、生物碱、脂肪酸和蛋白质等,本文综述了近年来具有抗炎活性的海洋天然产物及其衍生物的研究进展,以期对开发高效安全抗炎药物提供一定帮助。  相似文献   

10.
海绵来源链霉菌S52-B中氨酰胺天然产物的分离与鉴定   总被引:1,自引:0,他引:1  
【背景】海洋微生物是复杂海洋生态环境中重要的生物资源之一。海洋微生物所产生的活性天然产物极为丰富,是药物或药物先导化合物的重要来源。【目的】探索海洋中海绵来源链霉菌Streptomycessp.S52-B的优势生长条件,挖掘其次级代谢产物,以期分离具有良好生物活性的天然产物。【方法】根据"One Strain Many Compounds"(OSMAC)策略,寻找利于Streptomyces sp. S52-B生长和次级代谢产物产生的优势培养基,结合质谱及特征性的紫外吸收谱图,选择培养基进行大量发酵。利用正相硅胶柱色谱、葡聚糖凝胶柱色谱和制备型高效液相色谱等进行分离纯化,并应用高分辨质谱和核磁共振光谱进行化合物结构解析。【结果】确定培养基A–D为海洋链霉菌S52-B的优势培养基,基于紫外吸收光谱与质谱分析,从培养基A的大量发酵物中分离鉴定3个具有吡咯并[4,3,2-de]喹啉核心结构的含氯化合物,属于氨酰胺类天然产物,其中Ammosalic acid为新结构化合物。【结论】已知含有吡咯并喹啉母核的氨酰胺类家族化合物具有优良的抗癌活性。本研究从海绵来源链霉菌S52-B中分离鉴定了3个氨酰胺类化合物,其中一个是新结构化合物,不仅丰富了此类化合物家族的结构类型,也为研究其生物合成途径中的未知机理奠定了基础,还有利于结合培养条件和基因组信息从这株海绵来源链霉菌中挖掘新结构的活性天然产物。  相似文献   

11.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

12.
Allenic and cumulenic lipids   总被引:1,自引:0,他引:1  
Nowadays, about 200 natural allenic metabolites, more than 2700 synthetic allenic compounds, and about 1300 cumulenic structures are known. The present review describes research on natural as well as some biological active allenic and cumulenic lipids and related compounds isolated from different sources. Intensive searches for new classes of pharmacologically potent agents produced by living organisms have resulted in the discovery of dozens of such compounds possessing high anticancer, cytotoxic, antibacterial, antiviral, and other activities. Known allenic and cumulenic compounds can be subdivided on several structural classes: fatty acids, hydrocarbons, terpenes, steroids, carotenoids, marine bromoallenes, peptides, aromatic, cumulenic, and miscellaneous compounds. This review emphasizes the role of natural and synthetic allenic and cumulenic lipids and other related compounds as an important source of leads for drug discovery.  相似文献   

13.
It is necessary to continue to screen for new metabolites and evaluate the potential of less known and new bacterial taxa so that new and improved compounds for future use against drug-resistant bacteria or for chemical modification may be developed. There has been considerable interest in the detection and identification of marine microorganisms since they have been reported to produce bioactive compounds ranging from antitumour to antibacterial and antiviral agents. In this study, an improved technique that involves the exploitation of marine actinophages as indicators of the marine actinomycete taxa and uses marine bacteriophages as tools to reduce the numbers of common marine bacteria, which impedes the growth of rare actinomycetes on isolation plates, has been applied. This technique reduced the numbers of colony forming units of unwanted bacteria on isolation plates and hence increased the chances of detecting novel marine actinomycete genera for isolation and subsequent screening for antiviral activity.  相似文献   

14.
Marine organisms are an immense source of new biologically active compounds. These compounds are unique because the aqueous environment requires a high demand of specific and potent bioactive molecules. Diverse peptides with a wide range of biological activities have been discovered, including antimicrobial, antitumoral, and antiviral activities and toxins amongst others. These proteins have been isolated from different phyla such as Porifera, Cnidaria, Nemertina, Crustacea, Mollusca, Echinodermata and Craniata. Purification techniques used to isolate these peptides include classical chromatographic methods such as gel filtration, ionic exchange and reverse-phase HPLC. Multiple in vivo and in vitro bioassays are coupled to the purification process to search for the biological activity of interest. The growing interest to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs now in clinical trials. This review presents examples of interesting peptides obtained from different marine organisms that have medical relevance. It also presents some of the common methods used to isolate and characterize them.  相似文献   

15.
Gul W  Hamann MT 《Life sciences》2005,78(5):442-453
The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities.  相似文献   

16.
Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.  相似文献   

17.
海洋天然产物的研究与开发   总被引:6,自引:1,他引:6  
人们已从海藻、腔肠动物、海绵、海鞘、苔藓虫、软体动物、鱼类等海洋生物中分离到大量化学结构独特、生理活性强烈的物质。这些物质的化学结构可分为:聚醚类、大环内酯、萜类、生物碱、环肽、甾醇、多糖和不饱和脂肪酸等。其中,许多具有抗菌、抗真菌、抗肿瘤、抗病毒和心脑血管活性等作用,有的已进入临床试验阶段,可望发展成新药。  相似文献   

18.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

19.
The peer-reviewed marine pharmacology literature in 2007–8 is covered in this review, which follows a similar format to the previous 1998–2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007–8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.  相似文献   

20.
Many viral infections do not have treatments or resistant to existing antiviral therapeutic interventions, and a novel strategy is required to combat virus-mediated fatalities. A novel coronavirus (coronavirus disease 2019 [COVID-19]) emerged in Wuhan, China, in late 2019 and rapidly spread across the globe. COVID-19 has impacted human society with life-threatening and unprecedented health, social, and economic issues, and it continues to affect millions of people. More than 5,800 clinical trials are in place worldwide to develop treatments to eradicate COVID-19. Historically, traditional medicine or natural products, such as medicinal plants, marine organisms and microbes, have been efficacious in treating viral infections. Nevertheless, important parameters for natural products, including clinical trial information, pharmacokinetic data, potency and toxicity profiles, in vivo and in vitro data, and product safety require validation. In this review article, an evaluation is performed of the potential application of natural product-based antiviral compounds, including crude extracts and bioactive chemical compounds obtained from medicinal plants, marine organisms, and microbes, to treat the viral infections COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号