首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >~0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.  相似文献   

9.
10.
11.
Neural network model of gene expression.   总被引:1,自引:0,他引:1  
J Vohradsky 《FASEB journal》2001,15(3):846-854
  相似文献   

12.
Q Lu  L L Wallrath    S C Elgin 《The EMBO journal》1995,14(19):4738-4746
The regulatory region of Drosophila melanogaster hsp26 includes a positioned nucleosome located between the two DNase I hypersensitive (DH) sites that encompass the critical heat shock elements (HSEs). To test the role of this nucleosome in regulated expression, transgenic flies containing hsp26-lacZ fusion genes with alterations in the nucleosome-associated region have been generated. The positioned nucleosome is associated with a DNA sequence that does not itself contain any critical regulatory elements for heat shock-inducible expression. The nucleosome-associated sequence can be deleted, reversed, duplicated or replaced by a random sequence with no significant effect on DH site formation and gene expression. Analyses of hsp26 and hsp70 transgenes with spacing changes within the promoter region indicate that the location of the (CT)n.(GA)n elements dictates the location of DH site formation. Wrapping the DNA between the regulatory elements around a nucleosome is as effective for gene expression as placing the regulatory elements close to each other. A loss of inducible gene expression was observed when the nucleosome-associated DNA was replaced with sequences which appear to misdirect nucleosome placement. The results indicate considerable flexibility in the spacing between DH regulatory sites.  相似文献   

13.
14.
15.
16.
17.
18.
Heterosis is important for conventional plant breeding and is intensively used to increase the productivity of crop plants. Genetic processes shortly after fertilization might be of particular importance with respect to heterosis, because coordination of the diverse genomes establishes a basis for future performance of the sporophyte. Here we demonstrate a strong crossbreeding advantage of hybrid maize embryos as early as 6 days after fertilization in a modern maize hybrid and provide the first embryo specific analysis of associated gene expression pattern at this early stage of development. We identified differentially expressed genes between hybrid embryos and the parental genotypes by a combined approach of suppression subtractive hybridization and differential screening by microarray hybridizations. Association of heterosis in embryos with genes related to signal transduction and other regulatory processes was implied by the enrichment of these functional classes among the identified gene set. Quantitative RT-PCR analysis validated the expression pattern of 7 of 12 genes analysed and revealed predominantly additive, but also dominant and overdominant expression patterns in hybrid embryos. These patterns indicate that gene regulatory interactions among parental alleles act at this early developmental stage and the genes identified provide entry points for the exploration of gene regulatory networks associated with the specification of the phenomenon heterosis in the plant life cycle.  相似文献   

19.
20.
SUMMARY Cross-species hybrids between eggs of the direct-developing sea urchin, Heliocidaris erythrogramma , and sperm from its congeneric indirect-developing species, Heliocidaris tuberculata, show restoration of features of the paternal feeding pluteus larva, including the gut, and pluteus spicular skeleton. Unlike other reported sea urchin cross-species hybrids, Heliocidaris hybrids express genes derived from both maternal and paternal species at high levels. Ectodermal cell types, which differ radically between the two parental species, are of intermediate form in the hybrids. Gene expression patterns in hybrid embryo tissues represent a number of combinations of parental gene expression patterns: genes that are not expressed in one paternal species, but are expressed in hybrids as in the expressing parent; genes that show additive expression patterns plus novel sites of expression; a gene that is misexpressed in the hybrids; and genes expressed identically in both parents and in hybrids. The results indicate that both conserved and novel gene regulatory interactions are present. Only one gene, CyIII actin , has lost cell-type-specific regulation in the hybrids. Hybrids thus reveal that disparate parental genomes, each with its own genic regulatory system, can produce in combination a novel gene expression entity with a unique ontogeny. This outcome may derive from conserved gene regulatory regions in downstream genes of both parental species responding in conserved ways to higher-level regulators that determine modular gene expression territories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号