共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many numerical clustering algorithms have been applied to gene expression dataanalysis,the essential step is still biological interpretation by manual inspection.The correlation betweengenetic co-regulation and affiliation to a common biological process is what biologists expect.Here,weintroduce some clustering algorithms that are based on graph structure constituted by biological knowledge.After applying a widely used dataset,we compared the result clusters of two of these algorithms in terms ofthe homogeneity of clusters and coherence of annotation and matching ratio.The results show that theclusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Clustersoftware,which contains the genes that are most expression correlative and most consistent with biologicalfunctions.Moreover,knowledge-guided analysis seems much more applicable than GO-Cluster in a largerdataset. 相似文献
2.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request. 相似文献
3.
In this paper we discuss some of the statistical issues that should be considered when conducting experiments involving microarray gene expression data. We discuss statistical issues related to preprocessing the data as well as the analysis of the data. Analysis of the data is discussed in three contexts: class comparison, class prediction and class discovery. We also review the methods used in two studies that are using microarray gene expression to assess the effect of exposure to radiofrequency (RF) fields on gene expression. Our intent is to provide a guide for radiation researchers when conducting studies involving microarray gene expression data. 相似文献
4.
5.
Background
Time-course microarray experiments can produce useful data which can help in understanding the underlying dynamics of the system. Clustering is an important stage in microarray data analysis where the data is grouped together according to certain characteristics. The majority of clustering techniques are based on distance or visual similarity measures which may not be suitable for clustering of temporal microarray data where the sequential nature of time is important. We present a Granger causality based technique to cluster temporal microarray gene expression data, which measures the interdependence between two time-series by statistically testing if one time-series can be used for forecasting the other time-series or not. 相似文献6.
Many bioinformatics problems can be tackled from a fresh angle offered by the network perspective. Directly inspired by metabolic network structural studies, we propose an improved gene clustering approach for inferring gene signaling pathways from gene microarray data. Based on the construction of co-expression networks that consists of both significantly linear and non-linear gene associations together with controlled biological and statistical significance, our approach tends to group functionally related genes into tight clusters despite their expression dissimilarities. We illustrate our approach and compare it to the traditional clustering approaches on a yeast galactose metabolism dataset and a retinal gene expression dataset. Our approach greatly outperforms the traditional approach in rediscovering the relatively well known galactose metabolism pathway in yeast and in clustering genes of the photoreceptor differentiation pathway. AVAILABILITY: The clustering method has been implemented in an R package "GeneNT" that is freely available from: http://www.cran.org. 相似文献
7.
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field. 相似文献
8.
Background
Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value imputation approaches are available to the microarray users and new ones are constantly being developed, there is no general consensus on how to choose between the different methods since their performance seems to vary drastically depending on the dataset being used. 相似文献9.
Pan W 《Bioinformatics (Oxford, England)》2006,22(7):795-801
MOTIVATION: Cluster analysis of gene expression profiles has been widely applied to clustering genes for gene function discovery. Many approaches have been proposed. The rationale is that the genes with the same biological function or involved in the same biological process are more likely to co-express, hence they are more likely to form a cluster with similar gene expression patterns. However, most existing methods, including model-based clustering, ignore known gene functions in clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions as prior probabilities in model-based clustering. In contrast to a global mixture model applicable to all the genes in the standard model-based clustering, we use a stratified mixture model: one stratum corresponds to the genes of unknown function while each of the other ones corresponding to the genes sharing the same biological function or pathway; the genes from the same stratum are assumed to have the same prior probability of coming from a cluster while those from different strata are allowed to have different prior probabilities of coming from the same cluster. We derive a simple EM algorithm that can be used to fit the stratified model. A simulation study and an application to gene function prediction demonstrate the advantage of our proposal over the standard method. CONTACT: weip@biostat.umn.edu 相似文献
10.
Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data 总被引:1,自引:0,他引:1
MOTIVATION: Because co-expressed genes are likely to share the same biological function, cluster analysis of gene expression profiles has been applied for gene function discovery. Most existing clustering methods ignore known gene functions in the process of clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions into a new distance metric, which shrinks a gene expression-based distance towards 0 if and only if the two genes share a common gene function. A two-step procedure is used. First, the shrinkage distance metric is used in any distance-based clustering method, e.g. K-medoids or hierarchical clustering, to cluster the genes with known functions. Second, while keeping the clustering results from the first step for the genes with known functions, the expression-based distance metric is used to cluster the remaining genes of unknown function, assigning each of them to either one of the clusters obtained in the first step or some new clusters. A simulation study and an application to gene function prediction for the yeast demonstrate the advantage of our proposal over the standard method. 相似文献
11.
Bushel PR Hamadeh H Bennett L Sieber S Martin K Nuwaysir EF Johnson K Reynolds K Paules RS Afshari CA 《Bioinformatics (Oxford, England)》2001,17(6):564-565
SUMMARY: MAPS is a MicroArray Project System for management and interpretation of microarray gene expression experiment information and data. Microarray project information is organized to track experiments and results that are: (1) validated by performing analysis on stored replicate gene expression data; and (2) queried according to the biological classifications of genes deposited on microarray chips. 相似文献
12.
Validating clustering for gene expression data 总被引:24,自引:0,他引:24
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality. 相似文献
13.
Clustering methods for microarray gene expression data 总被引:1,自引:0,他引:1
Within the field of genomics, microarray technologies have become a powerful technique for simultaneously monitoring the expression patterns of thousands of genes under different sets of conditions. A main task now is to propose analytical methods to identify groups of genes that manifest similar expression patterns and are activated by similar conditions. The corresponding analysis problem is to cluster multi-condition gene expression data. The purpose of this paper is to present a general view of clustering techniques used in microarray gene expression data analysis. 相似文献
14.
Cluster-Rasch models for microarray gene expression data 总被引:1,自引:0,他引:1
Background
We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type.Results
We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes.Conclusions
The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes. 相似文献15.
CRCView is a user-friendly point-and-click web server for analyzing and visualizing microarray gene expression data using a Dirichlet process mixture model-based clustering algorithm. CRCView is designed to clustering genes based on their expression profiles. It allows flexible input data format, rich graphical illustration as well as integrated GO term based annotation/interpretation of clustering results. Availability: http://helab.bioinformatics.med.umich.edu/crcview/. 相似文献
16.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis. 相似文献
17.
Alexander L Richards Peter Holmans Michael C O'Donovan Michael J Owen Lesley Jones 《BMC bioinformatics》2008,9(1):490
Background
DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expression profiles can simplify the data, and potentially provides an important source of biological inference, but these methods have not been tested systematically on datasets from complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memISA, are used upon three brain expression datasets. The results are compared on speed, gene coverage and GO enrichment. The effects of combining the clusters produced by each method are also assessed. 相似文献18.
K Y Yeung C Fraley A Murua A E Raftery W L Ruzzo 《Bioinformatics (Oxford, England)》2001,17(10):977-987
MOTIVATION: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying probability distributions such as multivariate normal distributions. The issues of selecting a 'good' clustering method and determining the 'correct' number of clusters are reduced to model selection problems in the probability framework. Gaussian mixture models have been shown to be a powerful tool for clustering in many applications. RESULTS: We benchmarked the performance of model-based clustering on several synthetic and real gene expression data sets for which external evaluation criteria were available. The model-based approach has superior performance on our synthetic data sets, consistently selecting the correct model and the number of clusters. On real expression data, the model-based approach produced clusters of quality comparable to a leading heuristic clustering algorithm, but with the key advantage of suggesting the number of clusters and an appropriate model. We also explored the validity of the Gaussian mixture assumption on different transformations of real data. We also assessed the degree to which these real gene expression data sets fit multivariate Gaussian distributions both before and after subjecting them to commonly used data transformations. Suitably chosen transformations seem to result in reasonable fits. AVAILABILITY: MCLUST is available at http://www.stat.washington.edu/fraley/mclust. The software for the diagonal model is under development. CONTACT: kayee@cs.washington.edu. SUPPLEMENTARY INFORMATION: http://www.cs.washington.edu/homes/kayee/model. 相似文献
19.
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/). 相似文献