首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dianthus caryophyllus cv. Nelken was cultured in vitro under different ventilation rates (0.11, 0.21, 0.68 and 0.86 changes h−1). Ventilation modified the anatomical characteristics of shoots and leaves described for plants grown in non-ventilated vessels: the cuticle became thicker, there was a decreased cell size and intracellular space size. Also, there were more photosynthetic and supportive tissues, including thicker cell walls. Increased ventilation promoted in vitro hardening of micropropagated carnation shoots, and pushed the culture-induced phenotype closer to that of ex vitro acclimatized plants. Anatomical variability of in vitro-grown plants was demonstrated to be a consequence of ventilation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Summary The anatomy of normal and hyperhydric in vitro shoots and leaves from micropropagated simmondsia chinensis (Link.) Schn. (jojoba) was compared with that of seedlings (control plants). In vitro normal plantlets displayed good development and survived during the acclimatization stage. In vitro hyperhydric plantlets presented numerous anatomical defects, such as hypertrophy of the mesophyll and of the stem cortex, malformed non-functional stomata, epidermal discontinuity, and xylem hypolignification; they did not survice acclimatization. The study of the anatomical features of in vitro jojoba shoots and leaves allowed determination of the structural condition of the plantlets and prediction of which plantlet would survive the critical acclimatization stage.  相似文献   

3.
Morphogenetic status of cactus Mammillaria gracillis Pfeiff. tissue culture was studied by light and electron microscopy. In vitro propagated shoots spontaneously developed callus. This callus regenerated normal and hyperhydric shoots without exogenous hormones. Tumour tissue induced by wild or rooty strains of Agrobacterium tumefaciens never expressed any morphogenetic potential. Light microscopy showed cellular characteristics of morphologically different tissues. Ultrastructural studies revealed changes in plastids: secondary dedifferentiation of mature chloroplasts, thylakoid swelling and disruption, phytoferritin accumulation, plastid elongation and increase in size. Changes in chlorophyll and carotenoid content were in accordance with degradation of the thylakoid system. Plastids were confirmed as very sensitive organelles to an artificial hyperhydric environment as well as to Agrobacteria-mediated cell transformation.  相似文献   

4.
Organs or plants grown in vitro do not always exhibit the same responses to salinity as the whole plant of same species grown ex vitro. The response to salinity (100 mM NaCl) of seedlings of the wild tomato species Lycopersicon pennellii acc. Atico (Lpa) and of the cultivated tomato L. esculentum cv. M82 (Lem), the former is known as salt tolerant and the second as relatively salt sensitive under ex vitro conditions, was compared under in vitro conditions with three different ventilation regimes. It was found that under salinity shoots of the wild species accumulated the same or even more dry biomass than the control (roots somewhat less) under all ventilation levels. Growth of shoots and roots of the cultivated species was inhibited under the same conditions especially under the high ventilation. Ventilation reduced some abnormalities of leaf development related to hyperhydricity and consequently ventilated leaves exhibited a more compounded structure, increased area, increased resistance to water loss and stomata functioning. Ventilation increased K+, Na+ and Cl accumulation in shoots of both tomato species. This was more pronounced under salinity and in Lpa. This work indicates that differences that characterize whole plants of these species in response to salinity under ex vitro conditions are exhibited also in whole plants grown in vitro under high ventilation. It is suggested that ventilation is needed to evaluate well the response of whole plants to salt stress applied in vitro.  相似文献   

5.
Summary We report an improved procedure of in vitro propagation of Scrophularia yoshimurae—a medicinally important plant species indigenous to Taiwan. Induction of maximum shoot buds (22.75 per explant) was obtained with shoot tip explant cultured on Murashige and Skoog medium supplemented with 1.0mgl−1 benzyladenine (BA) and 0.2mgl−1 α-naphthaleneacetic acid and gelrite using dispense paper (DP) for ventilation closure of culture vessels. The type of gelling agents (agar and Gelrite) affected both quantity and quality of the shoots induced. Using aluminum foil for ventilation closure resulted in a higher number of hyperhydric shoots. Hyperhydricity was reduced by culturing shoots on a medium devoid of plant growth regulators in conjunction with the use of DP. Plantlet growth in vessels using DP was healthier and all plantlets survived after being transplanted to soil.  相似文献   

6.
Exposed shoot meristems from normal and hyperhydric (vitrified) tobacco, Nicotiana tabacum, were bombarded with gold particles either coated with plasmid DNA containing neomycin phosphotransferase (NPTII), rolC and -glucuronidase (GUS) genes (plasmid pGA-GUSGFrolC) or left uncoated. Meristems bombarded with uncoated particles were co-cultivated with Agrobacterium tumefaciens strain EHA 101 harboring the binary vector pGA-GUSGFrolC. Whole-plant transformants were produced from 4 of 40 hyperhydric meristems bombarded with uncoated particles followed by co-cultivation with A. tumefaciens. One transgenic plant was obtained from 40 normal, non-hyperhydric meristems treated. Transformation was verified by growth on kanamycin-containing medium, GUS assays, PCR, and Southern analysis. The plants tested through Southern analysis appeared to have 2 or more copies of the transgene insert. Seeds obtained from self-pollination of these transgenic plants segregated 3:1 or 15:1 (kanamycin resistant:sensitive) when germinated on medium containing 100 mg/l kanamycin, indicating transfer of foreign genes through the sexual cycle. Whole-plant transformants were not produced from 50 normal tobacco meristems bombarded with plasmid-coated gold particles and not exposed to engineered A. tumefaciens, but 1 plant of 60 bombarded hyperhydric meristems produced transgenic roots, the result of a chimera. We suggest that hyperhydric meristems are more readily transformed.  相似文献   

7.
Summary The effect of ventilation during the multiplication stage on the development of propagules from different clones of jojoba [Simmondsia chinensis (Link) Schneider] was investigated. Variation in the response to ventilation was due to genotype, the extent of ventilation, and to the period of exposure (transfer number). With intermediate ventilation treatments, propagules elongated to a greater extent and produced more dry biomass than propagules grown without ventilation. In the highest ventilation treatment, however, growth parameters were negatively affected. More importantly, propagules grown with moderate ventilation produced more plant material suitable for further multiplication and for the elongation stage than those grown in sealed tubes—the vessels used in our original micropropagation system. In five of the seven clones studied, growth and multiplication rate were decreased by the highest ventilation treatment. Propagules from the second and third multiplication transfers into ventilated vessels became more sensitive to high ventilation. Ambient water loss was slower in propagules produced under ventilation, probably due to smaller stomatal apertures. As a result of improved growth and decreased hyperhydricity by ventilation, the micropropagation protocol should be modified to include Magenta boxes equipped with vented lids as the preferred growing vessels.  相似文献   

8.
An efficient in vitro plant regeneration system was established from callus culture of Scopolia parviflora. Callus was induced from adventitious roots on B5 medium with 0.45–9.04 μM 2,4-dichlorophenoxyacetic acid (2,4-D). In vitro plantlet regeneration was achieved on B5 medium supplemented with 44.38 μM benzyladenine (BA), 3% sucrose, and 0.38% gelrite. Plantlets were transplanted to artificial soil and grown to maturity successfully in a greenhouse. The tropane alkaloid contents in regenerated plants were analyzed using high-performance liquid chromatography (HPLC), and were found to be higher than those of adventitious roots, native growing plants, and acclimated plants. Regenerated plants from organogenic callus cultures produced a greater amount of tropane alkaloids.  相似文献   

9.
Summary Comparative studies of carnation micropropagation under four different ventilation rates showed that using gas-permeable filters, with gelled or liquid media and modifying the volume of culture medium, it was possible to establish a suitable hydric state to obtain good proliferation rates with gelled and liquid medium, as well as optimal acclimatization of microcuttings. The following parameters were measured: ventilation rate, gas exchange coefficients, relative water loss, increase of agar concentration, micropropagation rates, percentage of hyperhydricity, and acclimatization rates. Our results confirm that it is possible to avoid hyperhydric plants cultured in liquid medium with the use of ventilated culture vessels through the control of the water relations during the multiplication phase and, at the same time, keeping the micropropagation rate.  相似文献   

10.
Phaseolus vulgaris L. seedlings were grown under different air humidities simulating conditions during micropropagation (very high humidity duringin vitro cultivation and low air humidity after transferex vitro). The functional stomatal apparatus developed after a short period of growth at low air humidity at the beginning of plant ontogeny or after transfer from high to low air humidity, but not in plants grown steadily under high air humidity. The ability of stomata to regulate gas exchange was not persistent and disappeared after transfer of plants from low to high humidity. The author thanks Mrs. L. Kolčabová for her skilled assistance. The paper is a part of the project supported by the grant No. 501/95/1303 of the Grant Agency of the Czech Republic.  相似文献   

11.
Stomata of leaves from in vitro grown rose plantlets remain opened in the dark. The ultrastructure of their guard cells was studied after a 7 h light and a 7 h dark period, and compared to that of functional stomata from plants which have been acclimatized to greenhouse conditions. Qualitative and quantitative observations concerning the shape of the guard cells, mitochondria, plastids and starch grains, demonstrated the similarity in guard cell ultrastructure. The peculiarity of guard cell ultrastructure of in vitro cultured plants was the inability to close in the dark; vacuolar area was 40% of the whole guard cell area during both light and dark period whereas, in guard cells from greenhouse plants, the vacuolar area was 40% of the whole guard cell area during the light and only 25% during the dark period. These results indicate that stomata from in vitro plants are duly developed and possess an ultrastructure suitable for a typical functioning. The inability to close in the dark results from atypical water relation.  相似文献   

12.
Endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinins (zeatin, zeatin riboside, dihydrozeatin, (diH)Z, dihydrozeatin riboside, (diH)[9R]Z, N6-isopentenyl adenine and N6-isopentenil adenine riboside) levels were evaluated in normal (N) and hyperhydric (H) microplants of Dianthus caryophyllus cultured under different aeration conditions in hormone-free liquid medium. The morphological differences between N and H explants grown under ventilated conditions were correlated with differences in their endogenous hormonal levels: after 15 and 30 days of culture, H explants showed lower IAA and ABA contents than N explants, as well as higher cytokinin levels, mainly of (diH)Z and (diH)[9R]Z. This was associated with less tissue differentiation and with an inability of H microplants to survive under ex vitro conditions. However, these relationships could not be observed between H and N explants grown under non-ventilated conditions probably due to the difficulty in discerning the plant status (N or H) and therefore, an underestimation of H microplants. This assumption is supported by the low ability for acclimatization to ex vitro of N plants grown without ventilation.  相似文献   

13.
The effect of in vitro cultivation of donor shoots on subsequent morphogenesis in leaf explants of quince (Cydonia oblonga Mill.) clone BA29 was investigated. Proliferating donor shoots were cultured in ventilated or closed vessels under different photosynthetic photon flux densities (PPFD; 200 and 100 μmol m−2 s−1) with 0, 15, 30 g dm−3 sucrose. Shoots grown in ventilated vessels, especially with sucrose at 15 or 30 g dm−3, were better developed with fully expanded leaves compared to those in standard closed vessels. Leaves collected from pre-treated donor shoots were used to assess regeneration capacity. Somatic embryo production was highest in leaves harvested from shoots cultured in closed vessels with 30 g dm−3 sucrose and in ventilated vessels with 15 and 30 g dm−3 sucrose and under high PPFD which was, in comparison with the control treatment (closed vessel, 30 g dm−3 sucrose and low PPFD), about 2 to 2.5 times higher. A similar response was observed for root regeneration.  相似文献   

14.
Summary Plant survival ex vitro requires functioning stomata, adequate cuticular wax composition and deposition, and normal morphological development. Light intensity, CO2 and relative humidity were altered inside an acoustic window mist reactor to study their effects on carnation (Dianthus caryophyllus) growth, stomata development, hyperhydration and epicuticular wax content. Increasing the light intensity from 65 to 145 μmol m−2 s−1 and enrichment of the gas phase with CO2 (1350 ppm) reduced the number of hyperhydrated plants from 75 to 25% and increased the percentage dry weight of normal (healthy) plants from 17 to 25%. Lowering the relative humidity (≈70% RH) surrounding the plants during the mist-off phase for the last 2 wk of culture reduced the number of hyperhydrated plants from 70 to 9% and also increased the percentage of dry weight of normal plants from 16 to 25%. The stomata on plants grown in conditions of high light or low humidity had smaller apertures and appeared sunken when compared to stomata from plants grown in low light and high relative humidity. The epicuticular wax profiles of plants from the greenhouse or Magenta boxes showed a distinct shift in wax compounds with developmental age, plant type (hyperhydrated or normal), and type of box that was used (vented or not). In addition, very different wax profiles were observed from plants grown in reactors with altered CO2 and light intensities.  相似文献   

15.
The aim of this research was to determine whether exogenous abscisic acid (ABA) applied immediately after ex vitro transfer of in vitro grown plants can improve their acclimatization. Tobacco (Nicotiana tabacum L.) plantlets were transferred into pots with Perlite initially moistened either by water or 50 μM ABA solution and they were grown under low (LI) or high (HI) irradiance of 150 and 700 μmol m−2 s−1, respectively. Endogenous content of ABA in tobacco leaves increased considerably after ABA application and even more in plants grown under HI. Stomatal conductance, transpiration rate and net photosynthetic rate decreased considerably 1 d after ex vitro transfer and increased thereafter. The gas exchange parameters were further decreased by ABA application and so wilting of these plants was limited. Chlorophyll (a+b) and β-carotene contents were higher in ABA-treated plants, but the content of xanthophyll cycle pigments was not increased. However, the degree of xanthophyll cycle pigments deepoxidation was decreased what also suggested less stress in ABA-treated plants. No dramatic changes in most chlorophyll a fluorescence parameters after ex vitro transfer suggested that the plants did not suffer from restriction of electron transport or photosystem damage.  相似文献   

16.
Tobacco (Nicotiana tabacum L.) plantlets were grown on Murashige and Skoog medium in ventilated Magenta boxes and for the last subculture 10 μM ABA was added to the medium. After three weeks plantlets were transferred into pots with Perlite moistened with water and grown in controlled conditions (16-h photoperiod, day/night temperature 25/20 °C, air humidity about 45 %) either under low or high irradiance of 150 (LI) and 700 (HI) μmol m−2 s−1, respectively. Content of endogenous ABA was 271.7 pmol g−1(f.m.) in ABA treated plantlets, while in control plantlets it was only 53.3 pmol g−1(f.m.). After ex vitro transfer, stomatal conductance and transpiration rate decreased considerably in comparison with in vitro grown plantlets and remained lower also 7 d after ex vitro transfer, especially in ABA-treated plants and so wilting of plants was practically eliminated. Net photosynthetic rate also decreased 1 d after ex vitro transfer but after 7 d it was mostly higher than that of in vitro grown plantlets. Water use efficiency significantly increased in ABA-treated plants. Chlorophyll a+b content did not change immediately after ex vitro transfer, nevertheless, after 7 d chlorophyll content was higher in ABA-treated plants. Pool of xanthophyll cycle pigments (XCP) and the degree of their deepoxidation (DEPS), which are connected with harmless dissipation of light energy, increased under high irradiance. Contents of XCP and ABA precursors (neoxanthin and violaxanthin) were lower in ABA-treated plants than in control plants indicating less stress in these plants. Most chlorophyll a fluorescence parameters did not change considerably after ex vitro transfer and so the photoinhibition was not observed even under HI. Slight increase in non-photochemical quenching under HI in ABA-treated plants suggested their better photoprotection. Thus application of ABA to the last subculture can improve acclimatization of in vitro grown plants to ex vitro conditions  相似文献   

17.
Hyperhydricity is a physiological disorder frequently affecting shoots propagated in vitro. Since it negatively affects shoot multiplication vigor, and impedes the successful transfer of micropropagated plants to in vivo conditions, hyperhydricity is a major problem in plant tissue culture. In commercial plant micropropagation, there are reports of up to 60% of cultured shoots or plantlets which demonstrate hyperhydricity, which reflects the pervasiveness of this problem. The phenomenon has been correlated to water availability, microelements, and/or hormonal imbalance in the tissue culture. In this study, the ultrastructure and the characteristics of reactive oxygen species between hyperhydric and normal shoots of garlic were studied. We observed that in some cells of hyperhydric tissues, the intranuclear inclusion was separated, the mitochondrion was swollen and its intracristae had splits, the organelles were compressed against the cell wall, and the chloroplasts and intergranal thylakoids were also compressed. Additionally, the content of chlorophyll and soluble protein in hyperhydric shoots decreased significantly. For instance, chlorophyll a decreased 43.61%, chlorophyll b decreased 49.29%, chlorophyll a+b decreased 48.10%, and soluble protein dropped 47.36%. In contrast, the O2 generation rate and H2O2 level increased 45.36% and 63.98%, respectively, obviously higher than the normal shoots. Lipoxygenase activity and malondialdehyde content in the hyperhydric shoots increased significantly, while the electrolyte leakage rose, indicating a serious membrane lipid peroxidatic reaction. Superoxide dismutase, peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase activities in hyperhydric tissue were all significantly higher than in normal leaf tissue. The antioxidant metabolism demostrated a close connection between hyperhydricity and reactivated oxygen species.  相似文献   

18.
The content of endogenous free abscisic acid (ABA) in the shoots of in vitro cultivated tobacco (Nicotiana tabacum L. cv. White Burley) and its changes during ex vitro acclimation of these plants to the greenhouse or growth chamber were estimated. The content of free ABA significantly increased at the 1st and/or 2nd day after plant transfer from in vitro to ex vitro. The ABA content of plants covered with transparent foil to maintain higher relative humidity (RH), did not significantly differ from ABA content of plants cultivated under ambient RH. Transfer to fresh medium also transiently increased the content of endogenous ABA. The ABA content in plants, which had been acclimated for 1 week to ex vitro conditions, decreased to the content found in the in vitro plants. Acclimation to ex vitro conditions affected the stomata on adaxial and abaxial sides differently: stomata on the adaxial side were less open than those on the abaxial one. The exogenous application of 5 μM ABA increased transiently its endogenous concentration in shoots of in vitro plants more than ten fold, but after 1 week the concentration in the shoots decreased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Establishment of microplants is related to the moisture vapourtransmission of the culture vessel lid. In this respect, stomatal andcuticular physiology were characterized in detached leaves from Dianthuscaryophyllus grown in the glasshouse or in vitro at different rates ofventilation. In vitro plants grown in non-ventilated culture vessels hadless waxes and therefore higher RWL compared to in vitro plants grown at Vr0.86 changes.h–1. The improvement of stomatal function inleaves obtained in ventilated vessels can be due to a performance of ionicrelations between guard and subsidiary cells, mainly by an increasingK+ concentration in the guard cells as ventilation decreases.Moreover, data showthat there is an increase in free ABA in the leavesfromventilated culture vessels to compensate for the conjugated ABA lostduring desiccation. If the proliferation stage proceeds in ventilatedculture vessels, the physiological characteristics of the plants producedare better than those obtained in non-ventilated culture vessels, confirmedby higher survival after soil transplantion.  相似文献   

20.
Summary We have established an in vitro system for the induction and study of nodulation in Pachyrhizus erosus (jicama) via a hairy root-Rhizobium coculture. In vitro-grown P. erosus plantlets were infected with Agrobacterium rhizogenes (ATCC No. 15834) and two hairy root lines were established. Hairy roots were grown in a split-plate system in which compartment I (CI) contained MS medium with nitrogen and different sucrose levels (0–6%), while CII held MS medium without nitrogen and sucrose. Nodule-like structures developed in transformed roots grown in CI with 2–3% surcose, inoculated with Rhizobium sp. and transferred to CII. Nodule-like structures that developed from hairy roots lacked the rigid protective cover observed in nodules from plants grown in soil. Western blot analysis of nodules from hairy roots and untransformed roots (of greenhouse-grown jicama) showed expression of glutamine synthetase leghemoglobin and nodulins. Leghemoglobin was expressed at low levels in hairy root nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号