首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of thermotolerance was studied in a temperature sensitive mouse cell line, ts85, and results were compared with those for the wild-type FM3A cells. At the nonpermissive temperature of 39 degrees C, ts85 cells are defective in the degradation of short-lived abnormal proteins, apparently because of loss of activity of a ubiquitin-activating enzyme. The failure of the ts85 cells to develop thermotolerance to 41-43 degrees C after incubation at the nonpermissive temperature of 39 degrees C correlated with the failure of the cells to degrade short-lived abnormal proteins at 39 degrees C. However, the failure of the ts85 cells to develop thermotolerance to 43 degrees C during incubation at 33 degrees C after either arsenite treatment or heating at 45.5 degrees C for 6 or 10 min did not correlate with protein degradation rates. Although the rate of degrading abnormal protein was reduced after heating at 45.5 degrees C for 10 min, the rates were normal after arsenite treatment or heating at 45.5 degrees C for 6 min. In addition, when protein synthesis was inhibited with cycloheximide both during incubation at 33 degrees C or 39 degrees C and during heating at 41-43 degrees C, resistance to heating was observed, but protein degradation rates at 39 degrees C or 43 degrees C were not altered by the cycloheximide treatment. Therefore, there is apparently no consistent relationship between rates of degrading abnormal proteins and the ability of cells to develop thermotolerance and resistance to heating in the presence of cycloheximide.  相似文献   

2.
Protein degradation in 3T3 cells and tumorigenic transformed 3T3 cells   总被引:1,自引:0,他引:1  
To study the relation of overall rates of protein degradation in the control of cell growth, we determined if transformation of fibroblasts to tumorigenicity affected their rates of degradation of short- and long-lived proteins. Rates of protein degradation were measured in nontumorigenic mouse Balb/c 3T3 fibroblasts, and in tumorigenic 3T3 cells transformed by different agents. Growing 3T3 cells, and cells transformed with Moloney sarcoma virus (MA-3T3) or Rous sarcoma virus (RS-3T3), degraded short- and long-lived proteins at similar rates. Simian virus 40 (SV-3T3)- and benzo(a)pyrene (BP-3T3)-transformed cells had slightly lower rates of degradation of both short- and long-lived proteins. Reducing the serum concentration in the culture medium from 10% to 0.5%, immediately caused about a twofold increase in the rate of degradation of long-lived proteins in 3T3 cells. Transformed lines increased their rates of degradation of long-lived proteins only by different amounts upon serum deprivation, but none of them to the same extent as did 3T3. Greater differences in the degradation rates of proteins were seen among the transformed cells than between 3T3 cells and some transformed cells. Thus, there was no consistent change in any rate of protein degradation in 3T3 cells due to transformation to tumorigenicity.  相似文献   

3.
Growth of nontransformed 3T3MIT fibroblasts in media containing 200 mM urea leads to the rapid acquisition of the transformed adhesive phenotype as evidenced by an increased rate of divalent cation-independent cell aggregation. The increased rate of divalent cation-independent cell aggregation of urea treated 3T3MIT cells shares many properties with the high rate of aggregation of transformed cells including a sensitivity to treatment with trypsin or hyaluronidase and a reduction in the presence of exogenously added hyaluronic acid. Reversal of the urea-induced increase in aggregation occurs within 24 hours in the absence of urea and can be blocked by 0.2 μg/ml cycloheximide. In the presence of cycloheximide, low rates of aggregation can be restored by the addition of urea-conditioned supernatents. The results of these experiments suggest that the loss of an aggregation-inhibitory activity during growth in media containing 200 mM urea is responsible for the increased rate of divalent cation-independent cell aggregation. After removal of this aggregation-inhibitory activity, the normally lowly adhesive 3T3MIT cells become phenotypically transformed with regards to the rate of divalent cation-independent cell aggregation.  相似文献   

4.
To accurately interpret the data from fluorescent proteins as reporters of gene activation within living cells, it is important to understand the kinetics of the degradation of the reporter proteins. We examined the degradation kinetics over a large number (>1,000) of single, living cells from a clonal population of NIH3T3 fibroblasts that were stably transfected with a destabilized, enhanced green fluorescent protein (eGFP) reporter driven by the tenascin-C promoter. Data collection and quantification of the fluorescence protein within a statistically significant number of individual cells over long times (14 h) by automated microscopy was facilitated by culturing cells on micropatterned arrays that confined their migration and allowed them to be segmented using phase contrast images. To measure GFP degradation rates unambiguously, protein synthesis was inhibited with cycloheximide. Results from automated live cell microscopy and image analysis indicated a wide range of cell-to-cell variability in the GFP fluorescence within individual cells. Degradation for this reporter was analyzed as a first order rate process with a degradation half-life of 2.8 h. We found that GFP degradation rates were independent of the initial intensity of GFP fluorescence within cells. This result indicates that higher GFP abundance in some cells is likely due to higher rates of gene expression, because it is not due to systematically lower rates of protein degradation. The approach described in this study will assist the quantification and understanding of gene activity within live cells using fluorescent protein reporters.  相似文献   

5.
The modes of action of insulin and of inhibitors of protein synthesis on the degradation of labeled cellular proteins have been studied in cultured hepatoma (HTC) cells. Protein breakdown is accelerated upon the deprivation of serum (normally present in the culture medium), and this enhancement is inhibited by either insulin or cycloheximide. An exception is a limited class of rapidly turning over cellular proteins, the degradation of which is not influenced by insulin or cycloheximide. Alternative hypotheses to explain the relationship of protein synthesis to the regulation of protein breakdown, viz., control by the levels of precursors of protein synthesis, regulation by the state of the ribosome cycle, or requirement for a product of protein synthesis, have been examined. Protein breakdown was not influenced by amino acid deprivation, and measurements of valyl-tRNA levels in HTC cells subjected to various experimental conditions showed no correlation between the levels of charged tRNAVal and the rates of protein degradation. Three different inhibitors of protein synthesis (puromycin, pactamycin, and cycloheximide) suppressed enhanced protein breakdown in a similar fashion. A direct relationship was found between the respective potencies of these drugs to inhibit protein synthesis and to block enhanced protein breakdown. When cycloheximide and insulin were added following a prior incubation of HTC cells in a serum-free medium, protein breakdown was maximally suppressed within 15-30 min. Actinomycin D inhibited protein breakdown only after a time lag of about 90 min. It is suggested that the regulation of protein breakdown in hepatoma cells requires the continuous formation of a product of protein synthesis, in a manner analogous to the mode of the control of this process in bacteria.  相似文献   

6.
The effects of protein synthesis inhibitors and the lysosomotropic agent chloroquine on the metabolism of the insulin receptor were examined. Through the use of the heavy-isotope density shift technique, cycloheximide was found to inhibit both the synthesis of new insulin receptor and the inactivation of old cellular insulin receptor. Upon investigation of the locus of this effect of protein synthesis inhibition, it was found that cycloheximide did not inhibit 1) the translocation of receptor from the cell surface to an intracellular site, 2) the recycling of receptor from the internal site back to the plasma membrane, nor 3) the degradation of insulin. Cycloheximide did, however, rapidly and completely inhibit the inactivation of the insulin receptor. In the presence of extracellular insulin, this effect of cycloheximide resulted in the long-term (6 h) accumulation of receptor in a trypsin-resistant intracellular compartment. Puromycin and pactamycin, protein synthesis inhibitors with mechanisms of action which differ from cycloheximide, produced the same effects on insulin receptor metabolism as cycloheximide, indicating that this effect on receptor metabolism is due to the inhibition of protein synthesis and not a secondary effect of cycloheximide. Actinomycin D also inhibited the inactivation of receptor. Chloroquine inhibited the receptor-mediated degradation of insulin, but had no effect on either the internalization or inactivation of the insulin receptor. The insulin-induced recycling of the internalized receptor was inhibited by chloroquine, possibly through the inhibition of the discharge of insulin from the insulin-receptor complex. From these observations, we suggest that 1) a protein factor is required to inactivate the insulin receptor, 2) this protein and the messenger RNA coding for the protein have short cellular half-lives, and 3) insulin degradation and insulin receptor inactivation are distinct, separable processes which not only occur at different rates, but possibly occur in distinct subcellular locations.  相似文献   

7.
Regulation of DNA synthesis was investigated in SV40 transformed 3T3 cells exhibiting variable growth rates and residence times in S phase when cultured in the presence of different serum concentrations. Pulse-labeled DNA was chased into large molecular weight material in vivo much more slowly in slowly growing cells than in cells growing at the normal rate. Consistent with this, the joining of short (less than 10 S) chains to form long (greater than 10 S) chains by whole cell lysate system in vitro was greatly impaired in slowly growing cells compared to controls. Thus the lengthening of S phase in SV3T3 cells growing slowly in low serum is reflected in a reduced rate of DNA chain elongation. The presence of cycloheximide during chase in vivo reduced the rate of conversion of pulse-labeled molecules into large molecular weight DNA in both slowly growing and normally growing cells.  相似文献   

8.
The cell dynamics of the receptor for tumor necrosis factor (TNF) were examined in TNF-sensitive KYM cells derived from human myosarcoma. With receptor synthesis inhibited by cycloheximide, the half-life of the surface TNF receptor was 2 h in the absence of TNF and 30 min in its presence, suggesting that the TNF receptor is non-recycling and that its internalization is accelerated by TNF. During cell incubation with TNF receptor degradation suppressed by chloroquine, the number of surface TNF receptors remained approximately constant, but the total number of surface and internal TNF receptors increased gradually, at 3 h reaching 1.5 times the initial number, thus suggesting continuous synthesis, externalization, internalization, and degradation of the TNF receptor in the absence of cycloheximide. On cell incubation with 125I-TNF, the intracellular quantity of the pulse-labeled TNF-receptor complex promptly increased, reaching a maximum at 20 min, and then gradually declined, thus confirming that the TNF receptor is internalized as a TNF-receptor complex in the presence of TNF. During incubations with protein synthesis suppressed by cycloheximide following surface TNF receptor digestion by trypsin, TNF receptors reappeared on the cell surface, increasing in number to a peak at 60 min and gradually decreasing, and cells previously exposed to cycloheximide with or without TNF showed no recurrence of surface TNF receptors, suggesting that the TNF receptor is non-recycling. The results of the study thus suggest that the TNF receptor is continuously internalized and degraded intracellularly by lysosomes without being recycled regardless of the presence or absence of TNF and, further, that its internalization is accelerated when it is part of the TNF-receptor complex.  相似文献   

9.
Chinese hamster ovary cells grown in medium containing low-density lipoprotein (LDL) express high acyl coenzyme A:cholesterol acyltransferase (ACAT) activity as measured by an [3H]oleate pulse. Removal of LDL from the medium causes rapid inactivation of ACAT activity; the t1/2 for the initial inactivation rate is 0.8 h. Preincubation with protein synthesis inhibitors (cycloheximide or emetine) for 2 h or longer lengthens the t1/2 for the initial inactivation rate to approximately 2.1 h. When LDL is removed for more than 10 h, the cells contain only 3% of the original ACAT activity. Cycloheximide under this condition causes an 8-fold increase in ACAT activity; the increase approaches a maximum in 6-8 h. The extent of ACAT activation by cycloheximide inversely depends on exogenous sterol present in the medium; LDL diminishes the activation, while cationized LDL or 25-hydroxycholesterol completely abolishes the activation. Adding LDL back to the sterol-free medium causes a 40-70-fold increase in ACAT activity; however, the activation of LDL is not further augmented if the cells are pretreated with cycloheximide. The above observations are qualitatively confirmed by ACAT assays in vitro with cell homogenates. LDL or cycloheximide has no effect on the rates of 3H-labeled triglyceride and 3H-labeled polar lipid synthesis. Efflux of prelabeled cholesterol from cells is cycloheximide-insensitive. Rates of degradation of [3H]-leucine-pulse-labeled total protein in cells grown with or without LDL are identical. The above results imply the existence of at least one specific short-lived factor that directly or indirectly inhibits ACAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In rat hepatocytes the Golgi complex contains a considerable amount of receptors for asialoglycoproteins (ASGP-R). To establish whether the presence of ASGP-R in the Golgi complex originate from de novo synthesis isolated rat hepatocytes were incubated with 100 micrograms/ml cycloheximide to stop protein synthesis. Provided that protein synthesis was completely inhibited by cycloheximide, uptake and degradation of ligand (asialo-orosomucoid) were unaffected. Also intracellular transport of newly synthesized proteins, as determined by monitoring biosynthesis and intracellular transport of albumin and ASGP-R, was not affected. After culturing the cells for 3.5 h in the presence of cycloheximide, no more albumin could be detected in the Golgi complex with immunofluorescence microscopy. However, immunocytochemical assessment showed that the ASGP-R was still in the Golgi complex. These results suggest that the Golgi complex contains a pool of ASGP-R which is independent of neosynthesis for several hours.  相似文献   

11.
The rate of protein degradation in cultured Chinese hamster ovary cells increases in response to histidine starvation. Using cell lines with defective histidyl-tRNA synthetase, or histidinol (a competitive inhibitor of the enzyme), we have previously demonstrated a functional connection between the increase in degradation and the amino acylation of this tRNA (Scornik, O. A., Ledbetter, M. L. S., and Malter, J. S. (1980) J. Biol. Chem. 255, 6322-6329). A correlation is shown here between the steady state level of histidyl-tRNA and the regulatory response. Cells were incubated for 15 min in the presence of L-[3H]histidine, at a concentration at which greater than 90% of histidine for protein synthesis derives from the medium. The level of histidyl-tRNA was measured by its radioactivity after purification by phenol extraction, ethanol precipitation, and mild alkaline hydrolysis. Protein degradation in each condition was determined by the release of acid-soluble radioactivity from cells labeled for 24 h with L-[1-14C]leucine. The steady state level of histidyl-tRNA was altered by either histidinol (which slows down its production) or cycloheximide (which interferes with its utilization). Cycloheximide counteracts the effects of histidinol both on the level of histidyl-tRNA and on the rate of protein degradation. Both effects can be obtained, however, even in the presence of cycloheximide, if higher concentrations of histidinol are used. The results indicate that this regulatory mechanism does not recognize the rate of amino acylation per se but rather, the steady state level of its product, amino acyl-tRNA.  相似文献   

12.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

13.
14.
Stimulation of resting transformed cells (Chang liver cells), prelabeled with [3H] leucine, with fetal calf serum, caused increased nuclear translocation of [3H] nonhistone proteins ([3H] NHP) and DNA synthesis and a parallel inhibition of proteolysis of cellular proteins. [3H] NHP migration was independent of protein synthesis. Fractionation of the nuclear proteins in a pH gradient of 2.5-6.5, showed that [3H] NHP fractions with high degradation rates in resting cells corresponded to the [3H] NHP fractions with high migration rates in stimulated cells, suggesting that degradation and migration of [3H] NHP are linked. Conditioned medium (COM) produced by Chang cells had similar effects as serum, suggesting that factors produced by these transformed cells, control cell growth by a mechanism that is similar to serum. The lysosomotropic amine eserine had similar effects as serum and COM. Based on the similarity of the effects, it would appear that serum and COM inhibit lysosomal proteolysis. It is proposed that serum and COM induce NHP migration to the nucleus by inhibiting lysosomal degradation of these proteins. Serum and COM caused also migration of [3H] histones to the nucleus, however the mechanism is not clear.  相似文献   

15.
In Chlamydomonas, the usual rapid degradation of tubulin mRNAs induced by flagellar amputation is prevented by inhibition of protein synthesis with cycloheximide. Evidence is presented that the ability of cycloheximide to stabilize alpha-tubulin mRNA depends on the time of addition. Addition of cycloheximide to cells before induction strongly stabilizes the induced mRNAs, while addition after their synthesis stabilizes them only transiently. Moreover, cycloheximide inhibition does not stabilize the same alpha-tubulin mRNA species in uninduced cells. These results suggest that cycloheximide is not acting to stabilize the induced alpha-tubulin mRNAs simply by preventing ribosome translocation. The stabilized state of tubulin mRNA was found to correlate with its occurrence on smaller polysomes but larger EDTA-released mRNP particles than the unstable state. A second effect of cycloheximide on the metabolism of induced tubulin mRNAs is to accelerate complete poly(A) removal. This effect of cycloheximide inhibition, unlike stabilization, occurs whenever cycloheximide is added to cells, and appears unrelated to stabilization. The effect is shown to be mRNA-specific; poly(A)-shortening on the rbcS2 mRNA is not altered in the presence of cycloheximide, nor do completely deadenylated molecules accumulate. Experiments in which cells were released from cycloheximide inhibition suggest that deadenylated alpha-tubulin mRNAs may be less stable than their polyadenylated counterparts during active translation.  相似文献   

16.
The involvement of altered protein metabolism in the expression of the temperature-sensitive (ts) pleiotropic phenotype of ts A1S9 cells was investigated. Cells are ts in growth and DNA replication. They undergo decondensation of their heterochromatin, interruptions of chromatin synthesis, and changes in cell size and morphology at the non-permissive temperature (npt) of 38.5 degrees C. Whereas the rates of incorporation of 3H-leucine, 35S-methionine, and 3H-fucose into proteins were unaffected at 38.5 degrees C, net protein accumulation was greatly reduced. This imbalance resulted from a rapid increase in the rate of protein degradation at the npt. Enhancement of protein degradation was detected within 2-4 hours after temperature upshift and constitutes the earliest metabolic alteration thus far observed during expression of the temperature-sensitive phenotype. The average half-life of proteins performed in ts A1S9 cells at 34 degrees C was decreased four-fold at the npt, and all major cytoplasmic proteins were affected equally. Enhanced protein degradation at the npt was shown to be sensitive to cycloheximide, ammonia, chloroquine, and vinblastine at concentrations that did not affect the basal protein degradation of normally cycling cells. Increased protein degradation at 38.5 degrees C did not involve an equivalent increase in total cellular protease activity. The data obtained are compatible with a model that suggests that temperature inactivation of the ts A1S9 gene product results in activation of a lysosome-mediated mechanism for the rapid degradation of cytoplasmic proteins.  相似文献   

17.
Human monocyte-derived macrophages (MDM) are cholesterol-loaded, and the rates of uptake, degradation and resecretion of high-density lipoproteins are measured and compared to the rates in control cells. Results show the binding activity of these lipoproteins is upregulated in cholesterol-loaded cells; the bound and internalized lipoproteins are not degraded to any appreciable extent but primarily resecreted as a larger particle. The enhancement of binding activity for high-density lipoproteins is arrested when cycloheximide is added to the medium, suggesting that protein synthesis is involved. Preliminary evidence also indicates that HDL3 (without apoE) after internalisation is converted intracellularly to a larger apoE-containing HDL2-like particles. Thus, MDM appears to possess specific receptors for HDL3 without apoE that may function to facilitate HDL-mediated removal of excess cholesterol from cells.  相似文献   

18.
Protein degradation has been measured in confluent monolayers of eleven lines of contact-inhibited cells and ten transformed lines as the rate of release of trichloroacetic acid-soluble radioactivity after prelabeling cell protein with [3H]leucine. Insulin, at concentrations from 10?12 M to 10?6 M, has been added at the beginning of the 4-hour degradation period to detect selective effects of this hormone as an inhibitor of the inducible proteolysis occurring in serumfree medium. In addition insulin binding measurements have been performed on selected cell lines in an attempt to relate receptor properties to insulin action. Substantial effects of insulin are found in most cells with a selective inhibition at low insulin concentrations noted in several of the transformed lines. The difference in insulin sensitivity is not entirely definitive because temperature-sensitive transformation mutants of NRK cells are not more sensitive to insulin at a temperature where they show the transformed phenotype. Although insulin receptors on different cell lines have similar binding properties, two of the hepatomas used, H35 and MH1C1, show inhibition of protein degradation at insulin concentrations where receptor occupancy is extremely low. Calvarial osteoblast-like cells have a high rate of protein degradation which can be reduced by growth factors but not by insulin. The lack of an insulin response is a consequence of poor insulin binding to the cells. Insulin binds to the osteogenic sarcoma cells in substantial amounts. However, its normal action to inhibit the induced proteolysis is restricted because with these cells no increase of proteolysis occurs in serum-free medium. Generally higher rates of protein degradation are observed in the contact-inhibited lines than the transformed cells. We suggest that this difference may provide a selective growth advantage to transformed cells.  相似文献   

19.
Cycloheximide is a protein synthesis inhibitor that superinduces the expression of many genes by preventing the degradation of otherwise labile mRNAs. In some genes this depends on the presence of the AUUUA destabilizing multimers in the 3′UTR. We examined the effect of cycloheximide on the murine intercellular adhesion molecule-1 (ICAM-1; CD54) gene expression in several cell lines including A20 (B cell lymphoma), T28 (T cell hybridoma), P388D1 (monocytic cell), SVEC4-10 (lymphoid endothelial cell), and ICAM-1-transfected murine fibroblast L cells. Cycloheximide was indeed able to dramatically increase the accumulation of ICAM-1 mRNA in all the cell lines examined except T28, and this seemed to be due to the stablization of the ICAM-1 mRNA as indicated by the half-life analysis. To determine whether this effect is dependent on the 3′UTR containing the AUUUA sequences, L cells were transfected with either the full-length ICAM-1 cDNA or a truncated form lacking the AUUUA sequences in the 3′UTR (ICAM-1Δ3). There was no discernible difference in the effect of cycloheximide on ICAM-1 mRNA accumulation or half-life between the two types of transfected cells. The effect of cycloheximide on ICAM-1 mRNA was markedly suppressed by serine/threonine (ser/thr) kinase inhibitors, H-7 and staurosporine, whereas the ser/thr phosphatase inhibitor, okadaic acid, augmented the cycloheximide effect. Inhibitors of protein tyrosine kinases and phosphatases had no effect. Unexpectedly, the level of cell surface ICAM-1 as well as de novo synthesis of ICAM-1 in SVEC4-10 and the ICAM-1-transfected L cells were also upregulated by cycloheximide, whereas the overall protein synthesis in these cells was profoundly inhibited, suggesting that ICAM-1 protein synthesis in these cells escapes the translational inhibition by cycloheximide. These results suggest that the stabilization of ICAM-1 mRNA by cycloheximide is independent of its translational inhibition and that ser/thr phosphorylation of unidentified protein(s) seems to play a crucial role in this effect. © 1995 Wiley-Liss, Inc.  相似文献   

20.
We have expressed the hybrid protein, GHG3, in baby hamster kidney cells to study protein turnover. GHG3 contains the cytoplasmic and transmembrane domains of vesicular stomatitis virus G protein linked to the C-terminus rat growth hormone. Turnover of GHG3 was prevented by lysosomal inhibitors (leupeptin, chloroquine, primaquine or monensin), while the accumulated GHG3 was localized to intracellular vesicles, results indicating that degradation occurred in lysosomes. The kinetics of degradation at 34 degrees C were determined in pulse-chase studies of metabolically labeled cells. After a lag period of 1 h, degradation was rapid (t1/2 = 1.25 h). The fate of GHG3 during the lag period was determined by immunofluorescence. We detected GHG3 on the cell surface when growth hormone antiserum was added to the growth medium 90 min prior to fixation and staining. No staining was observed if protein synthesis was inhibited with cycloheximide 90 min prior to the addition of growth hormone antiserum, a result indicating that GHG3 was rapidly removed from the cell surface. Unless the cells were pretreated with cycloheximide, antiserum was also detected in intracellular vesicles, which showed that GHG3 was endocytosed. These data indicate that a pool of GHG3 is transported rapidly to the cell surface, endocytosed and with little or no recycling directed to lysosomes for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号