首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
The anti-biowarfare anthrax and plague vaccines require repeated dosing to achieve adequate protection. To test the hypothesis that this limited immunogenicity results from the nature of vaccine interactions with the host innate immune system, we investigated molecular and cellular interactions between vaccines, dendritic cells (DCs), and T cells and explored the potential for adjuvants (pertussis) to boost induction of host immunity. Human monocyte-derived DCs were matured in the presence of vaccines and analyzed for their ability to induce Th1/Th2 development from naive T cells, expression of cell surface maturation/costimulation molecules, and cytokine production. The vaccines showed different behavior patterns. Although the plague vaccine is equivalent to control maturation factors in maturation and stimulation of DCs and induces strong MLR and Th outgrowth, the anthrax vaccine is a poor inducer of DC maturation, as indicated by low levels of HLA-DR, CD86, and CD83 induction and minimal proinflammatory cytokine production. Interestingly, however, anthrax vaccine-treated DCs stimulate Th1 and Th2 outgrowth and a limited MLR response. There was no sustained negative modulatory effects of the anthrax vaccine on DCs, and its limited stimulatory effects could be overridden by coculture with pertussis. These results were supported by analysis of anthrax vaccine recall responses in subjects vaccinated using pertussis as an adjuvant, who demonstrate anthrax-specific effector T cell responses. These data show that the anthrax vaccine is a suboptimal DC stimulus that may in part explain the observation that it requires repeated administration in vivo and offer a rational basis for the use of complementary DC-maturing adjuvants in combined immunotherapy.  相似文献   

2.
炭疽活疫苗家兔免疫力与血清抗芽胞IgG关系的研究   总被引:1,自引:0,他引:1  
炭疽疫苗是预防炭疽流行和炭疽生物恐怖的重要手段。已有动物实验表明,炭疽活疫苗的保护力优于以保护性抗原为主要成份的无细胞疫苗,但两类现行疫苗都有待重新评价和改进。炭疽疫苗的效力必须用适当的实验室方法进行检测与分析才能了解其性质和细节。试验中力图探寻炭疽活疫苗家兔免疫力与血清抗芽胞抗体水平的关系。用“皮上划痕人用炭疽活疫苗”免疫家兔,以特定制备的炭疽芽胞抗原用ELISA法检测血清抗炭疽芽胞IgG抗体水平,并用强毒炭疽杆菌攻击进行效力试验。免疫家兔血清几何平均抗芽胞IgG滴度在免疫后一个月内持续升高,14d达到206,28d时达到776,这时其抵抗20MLD毒菌攻击的保护率为80%,符合中国生物制品规程要求的保护力。一个月后抗体水平开始下降,42d时滴度降至223。实验所揭示的炭疽减毒活疫苗诱导的家兔抗芽胞IgG抗体与抗炭疽保护力之间的关系,既为评价现行疫苗提供了资料,也为研制新型疫苗建立了参考性指标。  相似文献   

3.
The author studied the course of vaccine anthrax infection in irradiated rabbits. The experiments show that infection of irradiated rabbits with a vaccine strain can give rise to a disease bacteriologically, clinically, histologically and biochemically identical with typical anthrax and that anthrax toxin can be demonstrated in the plasma of dead rabbits. The main cause of anthrax sepsis is not raised sensitivity to the toxin, but the high degree of proliferation of the microorganism in the irradiated organism. The significance of phagocytosis as a defence against vaccine anthrax infection and the significance of the capsule or of another somatic substance for the development of the anthrax syndrome are discussed.  相似文献   

4.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

5.
Technology of obtaining dry concentrated seeding material of the anthrax bacillus STI-1 vaccine strain was worked out. The use of dry seeding material for making dry anthrax vaccine rendered the preparations obtained more standard, reduced the time required for their production, led to increase of AKM-SH productivity, and to greater profitability of the vaccine production. The vaccine preparations obtained with the use of dry seeding material did not differ from control by immunogenicity.  相似文献   

6.
Improved vaccines and adjuvants are being developed to reduce the threat posed by a terrorist attack involving aerosolized anthrax spores. Nevertheless, uncertainty persists concerning the relative benefits of inducing mucosal vs systemic immunity to host survival following inhalational exposure to anthrax spores. This work examines the effect of delivering the licensed human vaccine (anthrax vaccine adsorbed, AVA) combined with a CpG oligodeoxynucleotide (ODN) adjuvant intraperitoneally or intranasally to A/J mice. Results indicate that protection from inhalational anthrax correlates with the induction of a strong systemic rather than mucosal immune response, and demonstrate that protection is significantly improved and accelerated by the addition of CpG ODN.  相似文献   

7.
Anthrax is caused by the spore‐forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA‐acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent‐spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.  相似文献   

8.
Study of humoral immune response and allergy in recipients of dry combined anthrax vaccine was performed. Immune response was assessed by antibody titers to protective antigen and by index of preventive properties of blood serum (PPS) of recipients. Relation of index of PPS and antibody titers in blood serum of the donors was established. Distribution of erythrocyte antigens in recipients of live dry and combined anthraxvaccines depending on blood group, Rh-factor, and age was studied. It has been shown that 80% of recipients of dry combined anthrax vaccine formed potent immunity with its high level lasted for 8 months. Study of allergenic properties of the combined anthrax vaccine using registration of neutrophils chemiluminescence in vivo showed low level of sensitization of vacinees.  相似文献   

9.
In 1881, Louis Pasteur described the Bacillus anthracis vaccine, which plays an important role for the treatment and prophylaxis of anthrax. Currently, treatment for anthrax infection involves the use of several different antibiotics, used in combination with vaccines, which possess potential virulence in white mice and guinea pigs. We discovered several new immunomodulators cytokines (polypeptides) produced by the neurosecretory cells of hypothalamus, some of which can be used as drugs for the treatment and prophylaxis of the anthrax. The proline-rich polypeptides, which consist from 10 to 15 amino acids and four proline residues, are of the special interest; one of them (PRP-1), which consist of 15 amino acids and has the following primary structure ALa-GLy-ALa-Pro-GLu-Pro-Ala-GLu-Pro-Ala-GLn-Pro-GLy-Val-Tyr (AGAPEPAEPAQPGVY) possesses antibacterial activity, and a new proline-rich peptide described by Galoyan and called G x -NH2. Both were tested for treatment against the anthrax bacillus or anthrax strain N55 vaccine in guinea pigs and mice in vivo, and in vitro preparations. The results of experiments show that these hypothalamic neurosecretory cytokines have a strong prophylaxis and therapeutic properties towards animals infected by episodic strain of anthrax and anthrax vaccine N55. The conventional concepts concerning the function of hypothalamic neurosecretion and hypothalamic mechanisms of adaptation have to be reconsidered.  相似文献   

10.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

11.
Anthrax belongs to highly dangerous infections of man and animals. No effective treatment methods for pulmonary types of the disease have been yet developed. The existing anthrax vaccines were designed decades ago and need improvement to fit the large-scale vaccination of population. At the same time, the immunological properties of the anthrax vaccine main component, i.e. of the protective agent, have been poorly studied. We obtained, within the present case study, a panel of mouse monoclonal antibodies to the protective agent and investigated the properties of the highest-affine panel representatives. An unusual phenomenon was detected, which is related with enhancement of the anthrax toxin action on the mouse macrophage-like cell-line in presence of the 1F2 monoclonal antibody. The remaining analyzed antibodies, i.e. 6G8 and 6G7, were found to neutralize effectively the toxin action. The enhancing and neutralizing antibodies were proven to be specific to different domains of the protective antigen and to recognize epitopes in its composition. The antibody-mediated enhancement of the anthrax lethal action is a convincing argument for further development of a new-generation anthrax vaccine. Definition of the linear antigen determinants for neutralizing antibodies in the protective antigens is an important step in the development of the next-generation anthrax vaccine.  相似文献   

12.
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine’s reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.  相似文献   

13.
This report summarizes the recent investigations on the use of Bacillus anthracis as a live vector for delivery of antigens. Recombinant strains were constructed by engineering the current live Sterne vaccine. This vaccine, used to prevent anthrax in cattle, causes side-effects due to anthrax toxin activities. Bacteria producing a genetically detoxified toxin factor were devoid of lethal effects and were as protective as the Sterne strain against experimental anthrax. Moreover, B. anthracis expressing a foreign antigen controlled by an in vivo inducible promoter were able to generate either antibody or cellular protective responses against heterologous diseases.  相似文献   

14.
AIM: To analyse the growth of Bacillus anthracis during simulations of the UK anthrax vaccine manufacturing process. METHODS AND RESULTS: Simulated vaccine production runs were performed using the toxigenic, acapsulate Sterne 34F(2) strain of B. anthracis in semi-defined medium. After rising during the logarithmic growth phase, the pH of the culture starts to fall at about 18 h from pH 8.7 to reach <7.6 at 26 h, coincident with consumption of glucose and optimal production of protective antigen (PA; 7.89 g ml(-1), SD 1.0) and lethal factor (LF; 1.85 g ml(-1), SD 0.29). No increased breakdown of toxin antigens was seen over the 26-32 h period. When glucose was exhausted, amino acids (principally serine) were utilized as an alternative carbon source. Sporulation was not observed during the 32 h. CONCLUSIONS: PA and LF, the principal constituents in the UK anthrax vaccine, undergo little degradation during vaccine fermentation. The vaccine manufacturing process is robust and reproducible. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first detailed analysis of the manufacturing process used for the UK acellular anthrax vaccine; insight gained into the process will support continued and safe vaccine manufacture.  相似文献   

15.
A two-stage, multilevel assay quality control (QC) system was designed and implemented for two high stringency QC anthrax serological assays; a quantitative anti-PA IgG enzyme-linked immunosorbent assay (ELISA) and an anthrax lethal toxin neutralization activity (TNA) assay. The QC system and the assays were applied for the congressionally mandated Centers for Disease Control and Prevention (CDC) Phase 4 human clinical trial of anthrax vaccine adsorbed (AVA, BioThrax). A total of 57,284 human serum samples were evaluated by anti-PA enzyme-linked immunosorbent assay (ELISA) and 11,685 samples by anthrax lethal toxin neutralization activity (TNA) assay. The QC system demonstrated overall sample acceptance rates of 86% for ELISA and 90% for the TNA assays respectively. Monitoring of multiple assay and test sample variables showed no significant long term trends or degradation in any of the critical assay reagents or reportable values for both assays. Assay quality control data establish the functionality of the quality control system and demonstrates the reliability of the serological data generated using these assays.  相似文献   

16.
Whereas Pasteur patented the biotechnological processes that he invented between 1857 and 1873 in the agro-food domain, he did not file any patents on the artificial vaccine preparation processes that he subsequently developed. This absence of patents can probably be explained by the 1844 patent law in France that established the non-patentable status of pharmaceutical preparations and remedies, including those for use in veterinary medicine. Despite the absence of patents, the commercial exploitation of the anthrax vaccine in the 1880s and 1890s led to a technical and commercial monopoly by Pasteur's laboratory as well as the founding of a commercial company to diffuse the vaccine abroad. Pasteur repeatedly refused to transfer his know-how and anthrax vaccine production methods to foreign laboratories, on the grounds that he wished to control the quality of the vaccines produced. Indeed, it was relatively difficult to transfer a method that was not yet perfectly stabilized in the early 1880s. Pasteur also wanted to maintain the monopoly of his commercial company and to increase the profits from vaccine sales so that the Institut Pasteur could be financially independent. The 'Pasteur anthrax vaccine' operating licences are described and analysed in detail in this article.  相似文献   

17.
Engineered chloroplasts as vaccine factories to combat bioterrorism   总被引:1,自引:0,他引:1  
Bacillus anthracis is ideal for making biological weapons, but the licensed anthrax vaccine is unsuitable for widespread public administration. Recombinant subunit-vaccine candidates offer potential alternatives, and plant-based production systems facilitate the inexpensive bulking of target antigens. A recent report demonstrates expression of anthrax protective antigen in tobacco chloroplasts--this material is immunogenic and protective when injected into mice. Provided an economic purification scheme can be developed, this technology holds promise for an improved vaccine.  相似文献   

18.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

19.
We determined the genotypes of seven Bacillus anthracis strains that were recovered from nine anthrax outbreaks in North-East China from 2010 to 2014, and two approved vaccine strains that are currently in use in China. The causes of these cases were partly due to local farmers being unaware of the presence of anthrax, and butchers with open wounds having direct contact with anthrax-contaminated meat products. The genotype of five of the seven recovered strains was A.Br.001/002 sub-lineage, which was concordant with previously published research. The remaining two cases belongs to the A.Br.Ames sub-lineage. Both of these strains displayed an identical SNR pattern, which was the first time that this genotype was identified in North-East China. Strengthening education in remote villages of rural China is an important activity aimed at fostering attempts to prevent and control anthrax. The genotype of the vaccine strain Anthrax Spore Vaccine No.II was A.Br.008/009 and A.Br.001/002 for the vaccine strain Anthrax Spore Vaccine Non-capsulated. Further studies of their characteristics are clearly warranted.  相似文献   

20.
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA) - an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号