首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Under oxidative stress mediated by H2O2, significant activation of purified aldose reductase from bovine small intestine was observed in the presence of purified thioredoxin from bovine small intestine.  相似文献   

2.
Under oxidative stress mediated by H(2)O(2), significant activation of purified aldose reductase from bovine small intestine was observed in the presence of purified thioredoxin from bovine small intestine.  相似文献   

3.
Alopecia areata (AA) is a common disease of patchy hair loss on the scalp that can progress to cover the entire scalp and eventually the entire body. Intralesional injection of corticosteroids is the first-line therapy for adult patients, however some patients do not respond to glucocorticoid treatment effectively. To delineate the molecular mechanism underlying glucocorticoid insensitivity, we examined the expression of glucocorticoid receptor (GR) and thioredoxin reductase 1 (TrxR1). In some case of glucocorticoid-resistant AA patients, the expression of TrxR1 was decreased in outer root sheath (ORS). We then investigated the effect of TrxR1 on GR activity using recombinant adenoviruses. Overexpression of TrxR1 markedly increased GR activity in ORS cells cultured in vitro. In addition, TrxR1 protected GR activity against H(2)O(2). Finally, TrxR1-enhanced GR activity was significantly inhibited by the overexpression of dominant negative form of Trx (Trx(C32S/C35S)). These results suggest that decreased TrxR1 may be one putative cause for glucocorticoid resistance in AA, through the impact on intracellular redox system.  相似文献   

4.
This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pK a and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2 , seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2 to Cys-SH).  相似文献   

5.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

6.
Glutathione peroxidase and thioredoxin reductase are selenocysteine-dependent enzymes that protect against oxidative injury. This study examined the effects of dietary selenium on the activity of these two enzymes in rats, and investigated the ability of selenium to modulate myocardial function post ischemia-reperfusion. Male wistar rats were fed diets containing 0, 50, 240 and 1000 microg/kg sodium selenite for 5 weeks. Langendorff perfused hearts isolated from these rats were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Liver samples were collected at the time of sacrifice, and heart and liver tissues assayed for thioredoxin reductase and glutathione peroxidase activity. Selenium deficiency reduced the activity of both glutathione peroxidase and thioredoxin reductase systemically. Hearts from selenium deficient animals were more susceptible to ischemia-reperfusion injury when compared to normal controls (38% recovery of rate pressure product (RPP) vs. 47% recovery of RPP). Selenium supplementation increased the endogenous activity of thioredoxin reductase and glutathione peroxidase and resulted in improved recovery of cardiac function post ischemia reperfusion (57% recovery of RPP). Endogenous activity of glutathione peroxidase and thioredoxin reductase is dependent on an adequate supply of the micronutrient selenium. Reduced activity of these antioxidant enzymes is associated with significant reductions in myocardial function post ischemia-reperfusion.  相似文献   

7.
The mammalian thioredoxin reductases (TrxR) are selenoproteins with a catalytic selenocysteine residue which in the oxidized enzyme forms a selenenylsulfide and in the reduced enzyme is present as a selenolthiol. Selenium compounds such as selenite, selenodiglutathione and selenocystine are substrates for the enzyme with low Km-values and the enzyme is implicated in reductive assimilation of selenium by generating selenide for selenoprotein synthesis. Redox cycling of reduced metabolites of these selenium compounds including selenide with oxygen via TrxR and reduced thioredoxin (Trx) will oxidize NADPH and produce reactive oxygen species inducing cell death at high concentrations explaining selenite toxicity. There is no free pool of selenocysteine since this would be toxic in an oxygen environment by redox cycling via thioredoxin systems. The importance of selenium compounds and TrxR in cancer and cardiovascular diseases both for prevention and treatment is discussed. A selenazol drug like ebselen is a direct substrate for mammalian TrxR and dithiol Trx and ebselen selenol is readily reoxidized by hydrogen peroxide and lipid hydroperoxides, acting as an anti-oxidant and anti-inflammatory drug.  相似文献   

8.
9.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

10.
11.
Reynolds CM  Poole LB 《Biochemistry》2000,39(30):8859-8869
AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nucleotides to the disulfide bond of its protein substrate. Homology of AhpF to the smaller (35 kDa) TrR protein occurs in the C-terminal part of AhpF; a stretch of about 200 amino acids at the N-terminus of AhpF contains an additional redox-active disulfide center and is required for catalysis of AhpC reduction. We have demonstrated that fusion of the N-terminal 207 amino acids of AhpF to full-length TrR results in a chimeric protein (Nt-TrR) with essentially the same catalytic efficiency (k(cat)/K(m)) as AhpF in AhpC reductase assays; both k(cat) and the K(m) for AhpC are decreased about 3-4-fold for Nt-TrR compared with AhpF. In addition, Nt-TrR retains essentially full TrR activity. Based on results from two mutants of Nt-TrR (C129, 132S and C342,345S), AhpC reductase activity requires both centers while TrR activity requires only the C-terminal-most disulfide center in Nt-TrR. The high catalytic efficiency with which Nt-TrR can reduce thioredoxin implies that the attached N-terminal domain does not block access of thioredoxin to the TrR-derived Cys342-Cys345 center of Nt-TrR nor does it impede the putative conformational changes that this part of Nt-TrR is proposed to undergo during catalysis. These studies indicate that the C-terminal part of AhpF and bacterial TrR have very similar mechanistic properties. These findings also confirm that the N-terminal domain of AhpF plays a direct role in AhpC reduction.  相似文献   

12.
Reactive oxygen species-mediated oxidation of methionine residues in protein results in a racemic mixture of R and S forms of methionine sulfoxide (MetO). MetO is reduced back to methionine by the methionine sulfoxide reductases MsrA and MsrB. MsrA is specific toward the S form and MsrB is specific toward the R form of MetO. MsrB is a selenoprotein reported to contain zinc (Zn). To determine the effects of dietary selenium (Se) and Zn on Msr activity, CD-1 mice (N=16/group) were fed, in a 2×2 design, diets containing 0 or 0.2 μg Se/g and 3 or 15 ∥ Zn/g. As an oxidative stress, half of the mice received L-buthionine sulfoximine (BSO; ip; 2 mmol/kg, three times per week for the last 3 wk); the others received saline. After 9.5 wk, Msr (the combined specific activities of MsrA and MsrB) was measured in the brain, kidney, and liver. Se deficiency decreased (p<0.0001) Msr in all three tissues, but Zn had no direct effect. BSO treatment was expected to result in increased Msr activity; this was not seen. Additionally, we found that the ratio of MetO to methionine in liver protein was increased (indicative of oxidative damage) by Se deficiency. The results show that Se deficiency increases oxidation of methionyl residues in protein, that Se status affects Msr (most likely through effects on the selenoprotein MsrB), and that marginal Zn deficiency has little effect on Msr in liver and kidney. Finally, the results show that the oxidative effects of limited BSO treatment did not upregulate Msr activity.  相似文献   

13.
The objective of this work was to determine whether long-term selenium (Se) deficiency might affect the antioxidant capacity of rat aorta, and the activities and expressions of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat arterial walls. Weanling male Wister rats were fed Se-deficient or Se-adequate diets for 12 months. For the Se supplementation, sodium selenite was supplemented in drinking water (1 microg Se/ml) for 1 month. The aorta isolated from these groups were used to determine activities and mRNA levels. In comparison with the control, the activity and expression of GPx, superoxide dismutase activity and the total antioxidant capacity were significantly decreased in Se-deficient rats arterial walls. Following Se supplementation, they were restored to different extents. The content of malondialdehyde was increased markedly in Se-deficient rats. There seems an inverse relationship between the dietary Se and the activity and expression of TR. A positive relationship exists between dietary Se and the antioxidant capacity of rat arterial walls. The activities and expressions of GPx and TR in arterial walls were regulated by selenium by different mechanisms. Regulation of the expression of TR was mediated by reactive oxygen species, but of GPx by selenium status. The thioredoxin system may be the major cellular redox signaling system in rat arteries, rather than the glutathione system.  相似文献   

14.
Physiological functions of thioredoxin and thioredoxin reductase.   总被引:46,自引:0,他引:46  
  相似文献   

15.
Granulysin is a disulfide rich 9 kDa human tumoricidal protein produced by cytolytic cells. Here we show that thioredoxin reductase (TrxR) reduced a 23-residue peptide from granulysin (GranF2), and this markedly enhanced the killing of small cell lung cancer cells (SCLC) by GranF2. Cells treated with reduced GranF2 showed rapid ATP deletion within 90 min and strong annexin V staining after 4 h incubation. SCLC with elevated TrxR levels was more sensitive to oxidized GranF2 than normal cells. The levels of TrxR are enhanced in many cancer cells, including SCLC, and it is possible that cytolytic activity of cytolytic cells on SCLC may in part be mediated by granulysin and modulated by TrxR.  相似文献   

16.
The thioredoxin (Trx) system, involving redox active Trxs and thioredoxin reductases (TrxRs), sustain a number of important Trx-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense, and redox-regulated signaling cascades. Methylmercury (MeHg) is an important environmental toxicant that has a high affinity for thiol groups and can cause oxidative stress. The Trx system is the major system responsible for maintaining the redox state of cells and this function involves thiol reduction mediated by selenol groups in TrxRs. MeHg has a great affinity to thiols and selenols, thus the potential toxic effects of MeHg on TrxR inhibition were determined in the current study. A single administration of MeHg (1, 5, and 10 mg/Kg) caused a marked inhibition of kidney TrxR activity, while significant inhibition was observed in the liver after exposure to 5 and 10 mg/Kg of MeHg. TrxR activity was determined 24 h after MeHg. In the brain, MeHg did not inhibit TrxR activity. In vitro exposure to MeHg indicated that MeHg inhibits cerebral (IC50, 0.158 μM), hepatic (IC50, 0.071 μM), and renal TrxR activity (IC50, 0.078 μM). The results presented herein demonstrated for the first time that renal and hepatic TrxRs can serve as an in vivo target for MeHg. This study suggests that MeHg can bind to selenocysteine residues present in the catalytic site of TrxR, in turn causing enzyme inhibition that can compromise the redox state of cells.  相似文献   

17.
The effects of a high-growth genetic background on the growth of mice hemizygous for one of two growth hormone transgenes were examined. Male mice hemizygous for wild-type (W) and dwarf mutant (M) bovine growth hormone (bGH) transgenes were crossed with females of a high-growth selected (S) and control (C) line as follows: W x S, W x C, M x S and M x C. Body weights of progeny were recorded weekly from 2 to 10 weeks of age. F1 progeny were classified as carriers (P) or non-carriers (N) of the transgene by assaying tail DNA for bGH using the polymerase chain reaction and agarose gel electrophoresis. A deficiency in the number of f1 progeny carrying the W (P<0.05) and M (P<0.01) bGH transgene was most likely due to differential prenatal and early postnatal mortality. Bodyweight means of wild-type transgenic mice were larger (P < 0.05) than those of non-transgenic littermates by 3 weeks of age in a C background in contrast to 5 weeks in S. The wild-type bGH transgene increased adult body weights more in the C (155%) than in the S (136%) background, indicating transgene expression by selection background interaction (P < 0.05). However, the growth response to the wild-type transgene in the S background was still large. The dwarf mutant transgene had a greater effect on growth reduction in the S (70%) than in the C (84%) background, thus causing transgene expression by selection background interaction (P < 0.05). Gender by wild-type transgene effect interactions (P < 0.001) for adult body weight were caused by the transgene reducing the gender difference for body weight in C and eliminating it in S. The dwarf mutant caused a larger negative effect on growth in males than in females, resulting in a gender by dwarf mutant transgene interaction (P < 0.001) for adult body weights. Results indicate that the effect of a GH transgene on growth can be affected both by a high-growth genetic background and the gender of progeny.  相似文献   

18.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

19.
Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation   总被引:10,自引:0,他引:10  
Thioredoxin reductase (TrxR) is a flavoprotein that contains a C-terminal penultimate selenocysteine (Sec) and has an ability to reduce thioredoxin (Trx), which regulates the activity of NF-kappa B. To date, three TrxR isozymes, TrxR1, TrxR2, and TrxR3, have been identified. In the present study, we found that among these isozymes only TrxR1 was induced by tumor necrosis factor-alpha (TNF alpha) in vascular endothelial cells. Furthermore, the overexpression of TrxR1 enhanced TNF alpha-induced DNA-binding activity of NF-kappa B and NF-kappa B-dependent gene expression. The catalytic Sec residue of TrxR1, which is essential for reducing Trx, was required for this NF-kappa B activation, and aurothiomalate, an inhibitor of TrxR, suppressed TNF alpha-induced activation of NF-kappa B and the expression of NF-kappa B-targeted proinflammatory genes such as E-selectin and cyclooxygenase-2. These results suggest that TrxR1 may act as a positive regulator of NF-kappa B and may play an important role in the cellular inflammatory response.  相似文献   

20.
The thioredoxin/thioredoxin reductase system is strongly induced in patients with rheumatoid arthritis (RA). We have investigated the impact on TR activity of doses of superoxide anion generated by the hypoxanthine (HX)/xanthine oxidase (XO) system and by hydrogen peroxide, H(2)O(2), for various times and compared the findings with synoviocytes obtained from osteoarthritis (OA) patients. At baseline, TR activity in RA cells was significantly higher than in OA cells (2.31 +/- 0.65 versus 0.74 +/- 0.43 mUnit/mg protein, p < 0.01). HX/XO and H(2)O(2) in RA cells decreased TR activity, which was found to be unchanged in OA cells. H(2)O(2) and superoxide anion caused a time-dependent accumulation of oxidized TR and induced the formation of carbonyl groups in TR protein in RA cells rather than OA cells, and oxidized the selenocysteine of the active site. The oxidation in TR protein was irreversible in RA cells but not in OA cells. In conclusion, we report that the oxidative aggression generates modifications in the redox status of the active site of the TR and induces an alteration of the Trx/TR system, concomitant with those of the other antioxidant systems that could explain the causes of oxidative stress related to RA disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号