首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Candidate single nucleotide polymorphisms (SNPs) from genome-wide association studies (GWASs) were often selected for validation based on their functional annotation, which was inadequate and biased. We propose to use the more than 200,000 microarray studies in the Gene Expression Omnibus to systematically prioritize candidate SNPs from GWASs.  相似文献   

2.
3.
4.
Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed and ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.  相似文献   

5.
Human microarrays are readily available, and it would be advantageous if they could be used to study gene expression in other species, such as pigs. The objectives of this research were to validate the use of human microarrays in the analysis of porcine gene expression, to assess the variability of the data generated, and to compare gene expression in boars with different levels of steroidogenesis. Cytochrome b5 (CYB5) expression was used to assess array detection sensitivity. Samples having high or low CYB5 RNA levels were hybridized to microarrays to determine if the known expression difference could be detected. Six hybridizations were conducted using human microarrays containing 3840 total spots representing 1718 characterized human ESTs. To analyze gene expression in boars with different levels of steroidogenesis, testis RNA from four boars with high levels of plasma estrone sulphate was hybridized to testis RNA from four boars with lower levels. Eight microarray hybridizations were conducted including fluor-flips. Self-self hybridizations were also conducted to assess the variability of array experiments. The Cy5 and Cy3 intensity values for each array were normalized using a locally weighted linear regression (LOESS). Statistical significance was assessed using a Student's t-test followed by the Benjamini and Hochberg multiple testing correction procedure. Quantitative real-time PCR (Q-RT-PCR) was used to verify select gene expression differences. The results show that CYB5 was significantly overexpressed in the high CYB5 sample by 1.8 fold (P < 0.05), verifying the known expression difference. The average log2 ratio of the majority of genes (1643) falls within one standard deviation of the mean, indicating the data were reproducible. In the high versus low steroidogenesis experiment, seven genes were significantly overexpressed in the high group (P < 0.05). Quantitative real-time PCR was used to validate five genes with the highest fold change, and the results corroborated those found by the microarray experiments. The results of the self-self hybridizations showed that no genes were significantly differentially expressed following the application of the Benjamini and Hochberg multiple testing correction procedure. The results presented in this report show that human arrays can be used for gene expression analysis in pigs.  相似文献   

6.
Tubulins, as major components involved in the organization of microtubules, play an important role in plant development. We describe here the expression profiles of all known α-tubulin (TUA), β-tubulin (TUB) and γ-tubulin (TUG) genes of barley ( Hordeum vulgare ), involving eight newly identified TUB sequences, five established TUA genes and one TUG gene. Macroarray and Northern blot-based expression patterns in the pericarp, endosperm and embryo were obtained over the course of the development of the grain between anthesis and maturation. These revealed that the various tubulin genes differed in their levels of expression, and to some extent were tissue specific. Two expression peaks were detected in the developing endosperm. The first and more prominent peak, at 2 days after flowering, included expression of almost all the tubulin genes. These tubulins are thought to be involved in mitoses during the formation of the syncytial endosperm. The second, less pronounced but more extended, peak included only some of the tubulin genes ( HvTUA3 , HvTUB1 and HvTUG ) and might be associated with the cell wall organization in aleurone and starchy endosperm. The HvTUA5 gene is expressed only in embryo of the developing grain and may be associated with shoot establishment. The expression profiles of the tubulin folding cofactors HvTFC A and HvTFC B as well as small G-protein HvArl2 genes were almost perfectly correlated with the global levels of tubulin mRNA, implying that they have a role in the control of the polymerization of α/β-tubulin heterodimers.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
TIS genes are rapidly and transiently induced by tetradecanoyl phorbol acetate in 3T3 cells. We analyzed the developmental appearance of a number of the TIS genes to determine whether, in a normal physiological context, these genes have common or distinct mechanisms of regulation. Each TIS gene has a distinct tissue specificity and/or developmental profile.  相似文献   

15.
16.
17.
5-Methyltryptophan (5MT), a tryptophan analog, resistant M4 rice mutants with high free amino acid contents were obtained through in vitro mutagenesis. To evaluate the 5MT resistance mechanism, a cDNA library was constructed by using the leaves and roots of the 5MT resistant mutant plants. Expressed sequenced tags (ESTs) of 1 019 randomly selected clones were analyzed and then assembled 588 unigens. A total of 389 unigenes had significant homologies with known protein sequences at the NCBI database and the remaining 199 unigenes were designated unidentified genes. These unigens were grouped into 13 categories according to their putative functions. Of the 233 randomly selected clones, 25 were identified as differentially expressed genes between 5MT resistant and 5MT sensitive wild type plants. For further study of the differential expression of the genes, expression patterns of 12 genes related to various biological functions were evaluated in response to 5MT treatment in both the resistant plants and sensitive plants. All of the tested 12 genes exhibited higher expression levels in mutant plants than wild type plants under the 5MT inhibition. These expression patterns of the 12 genes suggested that the genes related to 5MT resistance in the rice mutants have a variety of functions, and yield remarkably diverse expression patterns upon 5MT treatment. Many genes that were identified tend to be related to defense and stress responses, suggesting “cross-talking“ between biotic/abiotic stresses including the 5MT treatment. Therefore, 5MT resistant mutants might be of value for identifying genes related to plant defenses and stresses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号