首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Functional role of endothelial alpha(2)-adrenoceptor in coronary circulation remains unclear. Clonidine, an agonist of alpha(2)-adrenoceptors, was reported to induce coronary vasodilatation via stimulation of endothelial alpha(2)-adrenoceptors or coronary vasoconstriction involving vascular smooth muscle alpha(2)-adrenoceptors. Moreover, H(2) receptor-dependent responses to clonidine were described. Here, we reassess the contribution of endothelial alpha(2)-adrenoceptor and H(2) receptors to coronary flow and contractility responses induced by clonidine in the isolated guinea pig heart. We found that clonidine (10(-9) - 10(-6) M) produced concentration-dependent coronary vasoconstriction without a significant change in contractility. This response was inhibited by the alpha(1)/alpha(2)-adrenoceptor antagonist - phentolamine (10(-5) M) and the selective alpha(2)-adrenoceptor antagonist yohimbine (10(-6) M), but it was not changed by the selective alpha(1)-adrenoceptor antagonist prazosin (10(-6) M). In the presence of nitric oxide synthase inhibitor, L-NAME (10(-4) M) the clonidine-induced vasoconstriction was potentiated. Clonidine at high concentrations of 10(-5) - 3 x 10(-5) M produced coronary vasodilatation, and an increase in myocardial contractility. These responses were abolished by a selective H(2)-receptor antagonist, ranitidine (10(-5) M), but not by phentolamine (10(-5) M). We conclude that in the isolated guinea pig heart, clonidine-induced vasoconstriction is mediated by activation of smooth muscle alpha(2)-adrenoceptors whereas clonidine-induced coronary vasodilatation is mediated by activation of vascular H(2) histaminergic receptors. Accordingly, endothelial alpha(2)-adrenoceptors does not seem to play a major role in coronary flow response induced by clonidine.  相似文献   

2.
1. The effects of some synthetic alpha 2-adrenoceptor agonists on the mechanical activity and on contractile responses to catecholamines were examined in smooth muscle strips isolated from rainbow trout stomach. 2. Contractile responses to noradrenaline and adrenaline in the rainbow trout stomach strips were due to alpha 2-adrenoceptor activation. 3. Clonidine, p-aminoclonidine, naphazoline and guanabenz caused no mechanical response but concentration-dependently inhibited the contractile responses to noradrenaline and adrenaline without affecting the responses to acetylcholine, carbachol, 5-hydroxytryptamine and methionine-enkephalin. The order of potency was naphazoline greater than p-aminoclonidine greater than clonidine greater than guanabenz. 4. It is suggested that in the smooth muscle preparation of the trout stomach, some synthetic compounds (clonidine, p-aminoclonidine, naphazoline and guanabenz), which act on mammalian preparations as alpha 2-adrenoceptor agonists, show an antinoradrenaline (-adrenaline) effect; those compounds can be classified as alpha 2-adrenoceptor antagonists.  相似文献   

3.
Isolated guinea pig ileal longitudinal muscle was stimulated transmurally with a frequency of 0.1 Hz, duration of 0.5 msec, and supramaximal voltage (80-100 V). Transmural stimulation induces ileal contractions via activation of cholinergic neurons. alpha 2-Adrenergic agonists block the response to transmural stimulation via activation of prejunctional alpha 2 receptors which inhibit release of acetylcholine from cholinergic nerve terminals. Urapidil has been reported to have alpha 2-agonistic actions, and therefore was compared to the prototypic alpha 2 agonists, clonidine and B-HT 920. Clonidine and B-HT 920 depressed responses to transmural stimulation in the guinea pig ileum. Clonidine was the most potent inhibitor of the contractions, followed closely by B-HT 920. Very high concentrations of urapidil were necessary to suppress nerve-induced contractions of the ileum. The effects of clonidine and B-HT 920, but not urapidil, were antagonized by the selective alpha 2 antagonist, yohimbine. In unstimulated preparations, in which exogenous acetylcholine was used to elicit contractions of the ileum, urapidil depressed the response while clonidine and B-HT 920 had no effect. When PGF1 alpha was used to contract the ileum, no inhibitory effects were noted for urapidil, clonidine, or B-HT 920. Therefore urapidil, only in high concentrations, inhibits the contraction to transmural stimulation by depressing the response at a postjunctional cholinergic site. No evidence was found that urapidil can act as an agonist at a prejunctional alpha 2-receptor site.  相似文献   

4.
1. The small population of [3H]clonidine binding sites in rat fat cell membranes do not have the characteristics of typical alpha 2-adrenoceptors. 2. Clonidine (an alpha 2-adrenoceptor agonist) has no antilipolytic effect on rat fat cells stimulated by theophylline. 3. In contrast to the rat, [3H]clonidine labels an alpha 2-adrenoceptor in hamster fat cell membranes and clonidine exerts a strong antilipolytic effect on theophylline-stimulated lipolysis.  相似文献   

5.
A Gulati 《Life sciences》1992,50(2):153-160
Effect of endothelin (ET) on clonidine induced cardiovascular effects was studied in male Sprague-Dawley rats. Clonidine (75 micrograms/kg, iv) produced significant decrease in blood pressure and heart rate. ET-1 (50 ng/kg, iv) pretreatment completely antagonized the hypotension and bradycardia induced by clonidine. ET-2 (50 ng/kg, iv) and ET-3 (50 ng/kg, iv) had similar antagonistic effect on clonidine induced hypotension and bradycardia. The antagonistic effect of ET lasted for several hours, however, 4 hours after ET pretreatment only partial blockade of clonidine induced hypotension and bradycardia was observed. This indicated that the antagonistic effect of ET was reversible. Initial hypertensive response induced by high dose of clonidine (750 micrograms/kg, iv) could not be antagonized by ET-1, ET-2 or ET-3, while phenoxybenzamine, an alpha adrenoceptor antagonist, blocked the hypertensive response of clonidine. Thus, ET has no antagonistic effect on the initial hypertensive response but antagonizes the hypotensive and bradycardic effect induced by clonidine. Clonidine induced hypotension and bradycardia are mediated through central alpha 2 adrenoceptors while hypertension is mediated through peripheral alpha 2 adrenoceptors. It is concluded that central alpha 2 adrenoceptors are different from peripheral alpha 2 adrenoceptors and ET antagonizes the effect of clonidine only on central alpha 2 adrenoceptors but has no antagonistic activity on peripheral alpha 2 adrenoceptors.  相似文献   

6.
The rate of glucose utilization in isolated pancreatic islets of the rat was inhibited by the alpha 2-adrenoceptor agonists clonidine and epinephrine. Yohimbine reversed the inhibition. alpha 1 or beta-adrenoceptor agonists had little or no effect on glucose utilization. Stimulation of muscarinic receptors by carbamylcholine reversed the effect of clonidine. Pertussis toxin blocked the effect of clonidine on glucose utilization, and potentiated the response to carbamylcholine. 8-Bromo-cAMP did not affect glucose utilization in the presence of clonidine. Thus, alpha 2-adrenoceptors negatively modulate glucose utilization, and the effect is mediated by an inhibitory guanine nucleotide regulatory protein, but not by cAMP.  相似文献   

7.
This study, conducted in the rat phrenic nerve-diaphragm preparation, was designed to establish more direct evidence that norepinephrine enhances acetylcholine (ACh) release from motor neurons and characterize the alpha-adrenoceptor type mediating this action. Norepinephrine (50 microM, alpha 1 + alpha 2 agonist) increased nerve-stimulated release by 183%, as determined by radioenzymatic assay. This effect was completely abolished by pretreatment with the alpha-adrenoceptor antagonists phentolamine (alpha 1 + alpha 2) and by WB 4101 (alpha 1) but only modestly reduced by yohimbine (alpha 2). Clonidine (alpha 2 agonist) did not enhance ACh release or nerve-stimulated muscle contractions, while phenylephrine (alpha 1 agonist) and norepinephrine increased muscle contractions up to 19.5-22.4%. These results support the hypothesis that norepinephrine increases ACh release from somatic motor nerves via a presynaptic alpha 1 interaction.  相似文献   

8.
Clonidine, an alpha 2-adrenergic agonist, also binds to non-adrenergic imidazole receptors in brain and peripheral tissues. In adrenal medulla, however, clonidine appears to bind only to imidazole receptors. To assess whether the signal transduction mechanism of imidazole receptors differs from alpha 2-adrenergic receptors, we studied the actions of clonidine on the turnover of phosphoinositide and the production of cAMP and cGMP in slices of rat adrenal gland. Clonidine did not modify basal or carbachol mediated increases in phosphoinositide turnover or production of cAMP, however it increased the production of cGMP. The increase in cGMP was slow and unaffected by the addition of the phosphodiesterase inhibitor, IBMX. We conclude that the second messenger response triggered by clonidine in adrenal differs from that usually coupled to alpha 2-adrenergic receptors. Whether the effect is mediated by cell surface imidazole receptors remains to be established.  相似文献   

9.
The role of α(2)-adrenoceptors in regulation of gastric motility has been well documented. However, only few data are available on the adrenoceptor subtype that mediates this effect. The purpose of the present work was to identify the α(2)-adrenoceptor subtype(s) responsible for the inhibition of gastric motor activity in isolated fundus strip of the mouse. It was shown that (i) the electrically evoked contraction of the gastric fundus strip of the mouse was inhibited by the non-selective α(2)-adrenoceptor stimulant clonidine (EC(50): 0.019±0.001μM), the α(2A)-adrenoceptor subtype selective agonist oxymetazoline (EC(50): 0.004±0.001μM) and the α(2B)-adrenoceptor subtype preferring ST-91 (EC(50): 0.029±0.004μM), (ii) the inhibitory effect of clonidine (1μM), oxymetazoline (0.1μM) and ST-91 (1μM) on the contractions of gastric fundus strip was reversed by the non-selective α(2)-adrenoceptor antagonist idazoxan and α(2A)-adrenoceptor antagonist BRL 44408, but not by the α(2B/2C)-adrenoceptor antagonist ARC-239. (iii) Clonidine and ST-91 inhibited the electrically induced gastric contractions in C57BL/6 wild type mice as well as in α(2B)- and α(2C)-adrenoceptor deficient mice in a concentration-dependent manner; however, neither of them was effective in α(2A)-deficient mice. As a conclusion, it was first demonstrated that the inhibitory effect of α(2)-adrenoceptor agonists on the gastric motor activity of isolated stomach strip of the mouse is mediated purely by α(2A)-adrenoceptors.  相似文献   

10.
The site of neuromuscular blockade induced by polymyxin B and rolitetracycline was studied on isolated nerve and nerve-muscle preparations. Polymyxin B (1.8 X 10(-4) M) was equipotent to lidocaine as a local anaesthetic on a frog desheathed nerve preparation, while rolitetracycline (up to 3.6 X 10(-3)M) had no local anaesthetic effect. Polymyxin B (6 X 10(-5) M) and rolitetracycline (7 X 10(-4) M) blocked by 50% the response of rat diaphragm induced by phrenic nerve stimulation, but did not decrease the amount of acetylcholine (ACh) released from this preparation during nerve stimulation. Both antibiotics depressed the response of the rat diaphragm to inject ACh, and this response was more sensitive to inhibition by the drugs than was the response to nerve stimulation. With rolitetracycline, a concentration that blocked the response to nerve stimulation by 50% inhibited the response to injected ACh by 85%, and this relationship was similar to that with d-tubocurarine; however, polymyxin B was relatively more effective than d-tubocurarine in inhibiting the effect of ACh. Polymyxin B (1-1.5 X 10(-4) M) but not rolitetracycline (1 X 10(-3) M) depressed the response of the diaphragm to direct muscle stimulation. It is concluded that polymyxin B and rolitetracycline block neuromuscular transmission predominatly by an effect to depress the muscle's sensitivity to ACh; polymyxin B probably acts by an effect similar to that of local anaesthetics, while rolitetracycline probably acts by an effect similar to that of d-tubocurarine.  相似文献   

11.
Previous studies have demonstrated a diuretic effect of clonidine at low intrarenal infusion rates with a natriuretic effect being observed at high infusion rates (greater than or equal to 3 micrograms.kg-1.min-1). The natriuresis at high infusion rates may have been secondary to increased renal prostaglandin production. We therefore evaluated the effects of indomethacin (a cyclooxygenase inhibitor) on the response to clonidine in the anesthetized rat. Intrarenal infusions of saline (vehicle) or clonidine (0.1, 0.3, 1, and 3 micrograms.kg-1.min-1) were examined both in the presence and absence of pretreatment with indomethacin (5 mg/kg, i.p.). Clonidine produced a dose-related increase in urine volume and free water clearance at 0.3, 1, and 3 micrograms.kg-1.min-1 as compared with the vehicle group. Sodium excretion and osmolar excretion were increased only at the highest infusion rate investigated. Following indomethacin pretreatment, clonidine produced a greater increase in urine volume at each infusion rate investigated. The indomethacin pretreatment also resulted in a potentiation of the natriuretic effect of clonidine at all infusion rates. Interestingly, this was associated with an increase in osmolar clearance but not free water clearance. These effects of indomethacin were reversed by infusion of prostaglandin E2. An infusion of prostaglandin E2 attenuated the indomethacin-induced increase in both urine flow rate and sodium excretion, indicating that the effects of indomethacin were mediated by prostaglandin inhibition. These results suggest that endogenous prostaglandin production attenuates the renal effects of clonidine, and as well, that in the presence of alpha 2-adrenoceptor stimulation, prostaglandin E2 mediates an antidiuretic and antinatriuretic effect.  相似文献   

12.
The effect of intracerebroventricular (i.c.v.) injection of the alpha 2-adrenoceptor agonists clonidine and B-HT 920 on mean arterial pressure (MAP), heart rate (HR), and plasma concentrations of noradrenaline and adrenaline was examined in conscious unrestrained rats. The injection of 1.0 microgram clonidine significantly decreased MAP and slightly decreased HR. Plasma noradrenaline and adrenaline levels were slightly but not significantly decreased after the injection of 1 microgram clonidine. In contrast, the injection of 0.1-10.0 micrograms B-HT 920 increased MAP and decreased HR. Plasma noradrenaline and adrenaline levels were slightly increased after the injection of the 1- and 10-micrograms doses. The i.c.v. injection of the alpha 2-antagonist rauwolscine slightly but not significantly increased MAP and plasma noradrenaline and adrenaline levels. The responses to i.c.v. injection of clonidine and B-HT 920 were not changed by prior administration of rauwolscine. Neither the pressor response to B-HT 920 nor the depressor response to clonidine was abolished by rauwolscine, suggesting that neither response was mediated by alpha 2-adrenoceptors.  相似文献   

13.
In the present study, the modulatory effects of noradrenaline (NA) on the GABA response were investigated in the isolated cultured spiral ganglion neurons of rat by using nystatin perforated patch recording configuration under voltage-clamp conditions. NA reversibly depressed GABA response in a concentration-dependent manner and neither changed the reversal potential of the GABA response nor affected the apparent affinity of GABA to its receptor. alpha2-adrenoceptor agonist and antagonist, clonidine and yohimbine mimicked and blocked the NA action on the GABA response, respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), a protein kinase A inhibitor, mimicked the effect of NA on the GABA response. NA failed to affect the GABA response in the presence of both cAMP and protein kinase A modulator. However, NA still depressed the GABA response even in the presence of both phorbol-12-myristate-13-acetate, a protein kinase C activator and chelerythrine, a protein kinase C inhibitor. These results suggest that the NA suppression of the GABA response is mediated by alpha2-adrenoceptor which reduces intracellular cAMP formation through the inhibition of adenylyl cyclase. Therefore, NA input to the spiral ganglion neurons may modulate the auditory transmission by affecting the GABA response.  相似文献   

14.
  • 1.1. The effects of some synthetic α2-adrenoceptor agonists on the mechanical activity and on contractile responses to catecholamines were examined in smooth muscle strips isolated from rainbow trout stomach.
  • 2.2. Contractile responses to noradrenaline and adrenaline in the rainbow trout stomach strips were due to α2-adrenoceptor activation.
  • 3.3. Clonidine, p-aminoclonidine, naphazoline and guanabenz caused no mechanical response but concentration-dependently inhibited the contractile responses to noradrenaline and adrenaline without affecting the responses to acetylcholine, carbachol, 5-hydroxytryptamine and methionine-enkephalin. The order of potency was naphazoline >p-aminoclonidine > clonidine > guanabenz.
  • 4.4. It is suggested that in the smooth muscle preparation of the trout stomach, some synthetic compounds (clonidine, p-aminoclonidine, naphazoline and guanabenz), which act on mammalian preparations as α2-adrenoceptor agonists, show an antinoradrenaline (-adrenaline) effect; those compounds can be classified as α2-adrenoceptor antagonists.
  相似文献   

15.
Abstract

The mammalian circadian pacemaker can be phase shifted by photic, pharmacological, and behaviorally‐derived stimuli. The phase‐response curves (PRCs) characterizing these diverse stimuli may comprise two distinct families; a photic PRC typified by the response to brief light pulses, and a non‐photic PRC, typified by the response to dark pulses and to behavioral activation. The present study examined the phase shifting effects of acute systemic treatment with the alpha2‐adrenoceptor agonist, clonidine, in Syrian hamsters. Clonidine injections (0.25 mg/kg, ip) delivered during subjective night mimicked the phase shifting effects of light pulses in animals housed in both constant darkness (DD) and constant red light (RR), but similar effects were not seen in saline‐treated controls. Both clonidine and saline injections resulted in phase advances during subjective day, but only in RR‐housed animals. Clonidine‐induced phase shifting was dose‐dependent, but rather high doses were required to induce phase shifts. Pretreatment with the selective noradrenergic neurotoxin, DSP‐4, blocked clonidine‐induced phase shifting. These results suggest that clonidine acts at presynaptic alpha2‐adrenergic autoreceptors to disinhibit spontaneous and/or evoked activity in the photic entrainment pathway.  相似文献   

16.
R M Snider  M C Gerald 《Life sciences》1981,29(16):1661-1668
The mechanisms by which (+)-amphetamine biphasically modifies neuromuscular transmission were studied in the rat phrenic nervediaphragm preparation. Low to moderate amphetamine concentrations (30–300 μM) enhanced twitch height and potentiated the nerve stimulated release of acetylcholine (ACh) by up to 4.8-fold from the phrenic nerve. Higher amphetamine concentrations depressed muscle twitch and ACh release. Using a cannulated diaphragm preparation, amphetamine enhanced the twitch response to nerve stimulation but markedly depressed the contractions elicited by a pulsed injection of ACh. Amphetamine-induced enhancement of ACh release was prevented by pretreatment of animals with α-methyl-p-tyrosine, suggesting that amphetamine may be acting indirectly by releasing catecholamines. These results support the hypothesis that amphetamine enhancement results from a presynaptic increase in ACh release and the blocking actions are mediated by a postsynaptic inhibitory effect.  相似文献   

17.
This study was undertaken to determine the effects of clonidine on sympathetic neurotransmission in frog myocardium. In the electrically driven ventricular strips of frog heart, clonidine was found to be ineffective on contractility. However, clonidine increased the positive inotropic responses to transient additional stimulations. This effect of clonidine was antagonized by yohimbine, an alpha 2-adrenergic receptor antagonist. Clonidine did not change the positive inotropic effects of exogenously applied noradrenaline. These results suggest that clonidine facilitates sympathetic neurotransmission in frog myocardium via an action on alpha 2-adrenergic receptors located on sympathetic nerve terminals.  相似文献   

18.
Ca2+-dependent release of [3H] noradrenaline ([3H] NA) evoked by electrical stimulation of the isolated mouse vas deferens was subject to negative feedback modulation by idazoxan an alpha 2-adrenoceptor blocking agent. Both the resting release and that evoked by 1-phenylephrine proved to be Ca0-independent and unaffected by idazoxan. Ouabain-evoked release of [3H] acetylcholine from the myenteric plexus of ileal longitudinal muscle strips in the presence of eserine was not affected by atropine, but that evoked by electrical stimulation was enhanced. Since the release of NA or ACh by 1-phenylephrine and ouabain respectively is mainly of cytoplasmic origin, it is concluded that the release of transmitter from the cytoplasm is not subject to negative feedback modulation.  相似文献   

19.
The density of skin melanophores in many teleost fish decreases during long-term adaptation to a white background. Using the medaka, Oryzias latipes, we previously reported that apoptosis is responsible for the decrease in melanophores, and that a sympathetic neurotransmitter, norepinephrine (NE), induces their apoptosis in skin tissue cultures. In this study, we show that NE-induced apoptosis of melanophores is mediated by the activation of alpha2-adrenoceptors. Clonidine, an alpha2-adrenoceptor agonist, induced apoptotic melanophore death in skin organ culture, while phenylephrine, an alpha1-adrenoceptor agonist, had no effect. NE-induced apoptosis was diminished by an alpha2-adrenoceptor antagonist, yohimbine, but an alpha1-adrenoceptor antagonist, prazosin, did not abrogate the effect of NE. Furthermore, forskolin inhibited NE-induced apoptosis, while an inhibitor of PKA, H-89, mimicked the effect of NE. These results suggest that NE induces apoptosis in melanophores by attenuating cAMP-PKA signaling via alpha2-adrenoceptors.  相似文献   

20.
It is well known that the GABAergic and noradrenergic systems play an important role in blood pressure and heart rate regulation. Benzodiazepines and beta-carbolines, respectively, increase or decrease the probability of chloride-channel opening induced by GABA. The aim of this study was to determine, in conscious rats, the interaction existing between the central alpha2-adrenoceptor stimulation induced by clonidine and the facilitation or impairment of benzodiazepine receptor activity through the administration of either diazepam, a benzodiazepine receptor agonist, or methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), an inverse benzodiazepine agonist. Clonidine (5-10 microg, intracerebroventricularly) reduced heart rate and increased mean blood pressure by activation of central alpha2-adrenoceptors. Diazepam (2 mg/kg, intravenously (i.v.)) induced an increase in heart rate, while DMCM (0.3 mg/kg, i.v.) elicited a bradycardic effect. The bradycardic effects induced by both clonidine and DMCM were antagonized by the prior administration of methylatropine (1.5 mg/kg, i.v.). DMCM (0.3 mg/kg, i.v.) prevented the clonidine effects on heart rate and mean blood pressure, while diazepam (2 mg/kg, i.v.) failed to modify these effects. Our results suggest that the bradycardic effects of clonidine are mediated by a vagal stimulation and are related to the activation of a GABAergic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号