首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptosomes isolated from adult or newborn rat cerebrum take up L-lysine by two saturable systems, one with a high affinity low capacity and the other with a low affinity high capacity. Initial rate of uptake for low lysine concentrations is mort tissue. Analysis of kinetic data indicates that synaptosomes of the newborn have a higher Vmax than those of the adult for high affinity system but adult for high affinity system but adult synaptosomes have a higher Vmax than newborn for low affinity system. At a physiological lysine concentration of 0.5 mM, the calculated contributions of two systems indicate that the adult uptake occurs for about 71% by low affinity system but the newborn utilizes both systems to the same extent. The uptake is sodium independent but pH dependent. Lysine uptake is inhibited by other dibasic amino acids, arginine and ornithine but not cystine. Kinetic analysis indicates that arginine specifically inhibits the high affinity, low Km system for lysine uptake.  相似文献   

2.
Abstract— The uptake of [35S]cystine at 37°C by synaptosomal fractions isolated from adult rat cerebrum can be divided into two components. About 60% of the uptake is due to binding to synaptosomal proteins while the remainder exists as a free amino acid pool. Chemical analysis of this soluble component indicates that considerable reduction of cystine to cysteine occurs with 75% or more of the labeled molecular species being cysteine. The process involved in the uptake into the soluble pool was composed of two saturable systems with apparent K m values of 0.14 and 1.4 m m . The low K m system was sodium and oxygen independent but inhibited by dinitrophenol. Dibasic amino acids, lysine, arginine and ornithine, did not inhibit cystine uptake. The characteristics of cystine uptake by synaptosomes from newborn brain are very similar to those of adult brain.  相似文献   

3.
Synaptosomes isolated from adult or newborn rat cerebrum take up l-lysine by two saturable systems, one with a high affinity low capacity and the other with a low affinity high capacity. Initial rate of uptake for low lysine concentrations is more rapid in newborn, but for high concentrations the rate is greater in adult tissue. Analysis of kinetic data indicates that synaptosomes of the newborn have a higher Vmax than those of the adult for high affinity system but adult synaptosomes have a higher Vmax than newborn for low affinity system. At a physiological lysine concentration of 0.5 mM, the calculated contributions of two systems indicate that the adult uptake occurs for about 71% by low affinity system but the newborn utilizes both systems to the same extent. The uptake is sodium independent but pH dependent. Lysine uptake is inhibited by other dibasic amino acids, arginine and ornithine but not cystine. Kinetic analysis indicates that arginine specifically inhibits the high affinity, low Km system for lysine uptake.  相似文献   

4.
The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.  相似文献   

5.
Isolated renal cortical tubule fragments from rats ranging in age from less than 48 h to 15 weeks were used to examine the pattern of cystine uptake with development. Immature tubules took up cystine with a faster initial rate than mature tubules and did not reach a steady state by 60 min. By eight weeks of age, the timed uptake of cystine began to approach a steady state and between 8 and 11 weeks the uptake pattern achieved its adult form of reaching a steady state by 30 min of incubation. Analysis of the intracellular metabolism of the cystine taken up by the newborn tubules revealed that the majority had been reduced to cysteine with the formation of small amounts of reduced glutathione. Cystine entered the renal cortical tubule cell from the newborn via two saturable transport systems similar to the mature animal. The kinetic parameters of initial uptake of these two transport systems were similar in the mature and newborn animal except for a higher maximum transport velocity for the low Km, low capacity system in the newborn. Lysine inhibited cystine uptake by newborn tubules and this inhibition appeared to occur on the low Km, low capacity transport system similar to the adult. Cystine uptake was sodium dependent with an apparent affinity for sodium of 36 mequiv./l. From this data, the physiologic cystinuria of the immature animal does not appear to be referrable to a lower rate of influx as previously observed with the cortical slice. Other mechanisms should be sought to explain this phenomenon of immaturity.  相似文献   

6.
Expression of rat jejunal cystine carrier in Xenopus oocytes   总被引:2,自引:0,他引:2  
Functional interactive cystine-lysine carriers have been expressed in Xenopus oocytes following the injection of RNA extracted from rat intestinal mucosa. Lysine-inhibitable cystine uptake was able to be measured 16 h after oocyte injection with RNA. The longer the oocytes were maintained after injection, the more cystine transport capability was induced. Uninjected or water-injected oocytes showed virtually no lysine-inhibitable cystine uptake, and no system developed after the oocytes had been isolated and maintained in vitro. The cystine uptake expressed after RNA injection was selectively inhibited by dibasic amino acids and phenylalanine but not by other amino acids or alpha-methyl-D-glucoside. Expression of the interactive cystine-lysine system was induced only by RNA isolated from intestinal tissue and not by RNA from rat liver. The Km for cystine uptake in RNA-injected oocytes was 0.01 mM and appears identical to the single system found in the RNA source tissue.  相似文献   

7.
Insulin stimulates in a dose-dependent manner (concentration range of 0.1 - 10 microM) the synaptosomal uptake of amino acids characterized by high-affinity, Na+-dependent, veratridine-sensitive transport systems. This stimulation is observed in synaptosomes prepared from each of several regions of the adult rat brain. Both the initial rate of amino acid uptake and the overall capacity for amino acid accumulation are increased. Since these transport systems have been associated with the neurotransmitter role of the amino acids, we postulate that insulin can modulate neurotransmission in the rat central nervous system by increasing the efficiency of neuroactive amino acid reuptake.  相似文献   

8.
The 4F2 cell surface antigen is a disulfide-linked heterodimer induced during the process of cellular activation and expressed widely in mammalian tissues (Parmacek, M. S., Karpinski, B. A., Gottesdiener, K. M., Thompson, C. B., and Leiden, J. M. (1989) Nucleic Acids Res. 17, 1915-1931). The human heavy chain component, a type II membrane glycoprotein, has 29% identity to the amino acid transport-related protein encoded by the recently cloned rat D2 cDNA. We have demonstrated that Xenopus oocytes injected with in vitro transcribed cRNA from D2 take up cystine and dibasic and neutral amino acids (Wells, R. G., and Hediger, M. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5596-5600). In the present study, we examine the role of the human 4F2 heavy chain in amino acid transport. In vitro transcribed 4F2 cRNA was injected into Xenopus oocytes which were assayed for the uptake of radiolabeled amino acids. Our results show that cRNA from 4F2 stimulates the uptake of dibasic and neutral amino acids into oocytes at levels up to 3-fold higher than for water-injected control oocytes. There is no demonstrable uptake of cystine. Uptake is saturable, with characteristics of high affinity transport, and inhibition data suggest that uptake occurs via a single transporter. Dibasic amino acids are taken up by both 4F2 and D2 cRNA-injected oocytes in a sodium-independent manner. In contrast, 4F2-induced but not D2-induced neutral amino acid uptake has a significant component of sodium dependence. Likewise, neutral amino acids in excess inhibit the 4F2-induced uptake of radiolabeled arginine but not leucine in a sodium-dependent manner. The 4F2-induced uptake we observe most likely represents the activity of a single transport system with some characteristics of systems y+, b0,+, and B0,+. We suggest that 4F2 and D2 represent a new family of proteins which induce amino acid transport with distinct characteristics, possibly functioning as transport activators or regulators.  相似文献   

9.
Abstract: The nature of cysteine and cystine uptake from the cerebral capillary lumen was studied in the rat using the carotid injection technique. [35S]-Cysteine uptake was readily inhibited by the synthetic amino acid 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid (BCH), the defining substrate for the leucine-preferring (L) system in the Ehrlich ascites cell. The addition of non-radioactive alanine or serine, representatives of the alanine, serine, and cysteine-preferring (ASC) system, produced no significant decrease in the uptake of cysteine after cysteine transport by the L system was blocked with BCH. This indicated that the major component of cysteine's transport from the brain capillary lumen was by the L system with no detectable uptake of cysteine by the ASC system. No carrier-mediated transport of cystine, the disulfide form of the amino acid, was detected, nor was there any inhibition by cystine of the transport of the neutral amino acid methionine or the basic amino acid arginine. These results suggest that the ASC system, if present, is not quantitatively important for the transport of neutral amino acids from the brain capillary lumen.  相似文献   

10.
The decrease in neurotransmitter amino acid uptake was observed in rat brain synaptosomes incubated with S-adenosyl-L-methyl-methionine. The inhibitory effect of neurotransmitter as a consequence of methylation of synaptic membrane is more pronounced in stimulatory transmitter amino acids. The effect of phospholipids on amino acid uptake in rat brain synaptosomes decreases with age.  相似文献   

11.
The Na+ dependence of tyrosine uptake into rat brain synaptosomes and synaptosomal plasma membrane vesicles (SPMV) was examined in the present study. At low tyrosine concentrations, the isoosmotic substitution of Na+ by sucrose in the incubation medium led to an increase of tyrosine uptake in synaptosomes and to a decrease in SPMV. The removal of extracellular Ca2+ and Mg2+ and addition of isoosmotic sucrose completely prevented the augmented tyrosine uptake in Na+-free incubated synaptosomes. Morphological differences were found at the electron-microscopic level when synaptosomes were incubated in Na+-free and Na+-containing media. The internal volume measured for synaptosomes incubated in a Na+-free medium was almost half of that obtained in a Na+-containing medium, in good agreement with the observations made with the electron microscope. Also, the omission of Ca2+ and Mg2+ resulted in a specific swelling of only the synaptosomes incubated in Na+-free medium. When synaptosomes and SPMV were preloaded with several neutral amino acids, the tyrosine uptake rate was greatly increased, indicating fully operational exchange mechanisms for these amino acids. We propose that the enhancement of high-affinity synaptosomal tyrosine uptake observed in Na+-free medium is a consequence of a specific shrinkage of the synaptosomes and a parallel increase of the exchange rate with endogenous neutral amino acids.  相似文献   

12.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

13.
Crude mitochondrial fractions prepared from rat brains took up l -tryptophan. The component of the crude mitochondrial fraction responsible for this uptake is the synaptosome. After uptake of tryptophan occurred, rupture of synaptosomes released 97 per cent of the tryptophan unchanged. Rupture of synaptosomes abolished uptake. Penetration of the limiting membrane of synaptosomes by l -tryptophan both as influx and efflux was studied. Uptake of l -tryptophan was rapid, temperature dependent, partially inhibited by cyanide, 2-deoxy-d -glucose and ouabain, but apparently unaffected by low external sodium ion concentrations. d -tryptophan was a poor inhibiteur of l -tryptophan uptake. Concentration gradients Internal: external of up to 4:1 were achieved. Kinetic studies on l -tryptophan uptake and its competitive inhibition by l -phenylalanine indicated a saturable carrier-mediated transport system, present in the rat at birth. l -Tryptophan efflux from preloaded synaptosomes was markedly stimulated by certain arrino acids and its influx stimulated by preloading with l -tryptophan. This countertransport is further evidence for carrier-mediated or facilitated diffusion. On the basis of countertransport data there seem to be at least two systems for transporting amino acids across synaptosomal membrane. The relevance of these studies to the role of l -tryptophan as the initial precursor of brain 5-hydroxytryptamine is examined.  相似文献   

14.
1. The occurrence and characterization of acidic amino acid transport in the plasma membrane of a variety of cells and tissues of a number of organisms is reviewed. 2. Several cell types, especially in brain, possess both high- and low-affinity transport systems for acidic amino acids. 3. High-affinity systems in brain may function to remove neurotransmitter amino acid from the extracellular environment. 4. Many cell systems for acidic amino acid transport are energized by an inwardly directed Na+ gradient. Moreover, certain cell types, such as rat brain neurons, human placental trophoblast and rabbit and rat kidney cortex epithelium, respond to an outwardly directed K+ gradient as an additional source of energization. This simultaneous action may account for the high accumulation ratios seen with acidic amino acids. 5. Rabbit kidney has been found to have a glutamate-H+ co-transport system which is subject to stimulation by protons in the medium. 6. Acidic amino acid transport in rat brain neurons occurs with a stoichiometric coupling of 1 mol of amino acid to 2 mol of Na+. For rabbit intestine, one Na+ is predicted to migrate for each mol of amino acid. 7. Uptake in rat kidney cortex and in high-K+ dog erythrocytes is electrogenic. However, uptake in rabbit and newt kidney and in rat and rabbit intestine is electroneutral. 8. Na+-independent acidic amino acid transport systems have been described in the mouse lymphocyte, the human fibroblast, the mouse Ehrlich cell and in rat hepatoma cells. 9. In a number of cell systems, D-acidic amino acids have substantial affinity for transport; D-glutamate, in a number of systems, however, appears to have little reactivity. 10. Acidic amino acid transport in some cell systems appears to occur via the "classical" routes (Christensen, Adv. Enzymol. Relat. Areas Mol. Biol. 49, 41-101, 1979). For example, uptake in the Ehrlich cell is partitioned between the Na+-dependent A system (which transports a wide spectrum of neutral amino acids), the Na+-dependent ASC system (which transports alanine, serine, threonine, homoserine, etc.), and the Na+-independent L system (which shows reactivity centering around neutral amino acids such as leucine and phenylalanine). Also, a minor component of uptake in mouse lymphocytes occurs by a route resembling the A system. 11. Human fibroblasts possess a Na+-independent adaptive transport system for cystine and glutamate that is enhanced in activity by cystine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   

16.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   

17.
The ontogeny of the uptake of glutamate, GABA and glycine into synaptic vesicles isolated from rat brain has been investigated. The vesicular uptake of the three amino acids increased with developmental age in parallel with synaptogenesis, indicating a functional role of uptake of the amino acids by synaptic vesicles in the nerve terminals. Uptake of the amino acids by plasma membrane particles (synaptosomes) in brain homogenate showed a somewhat different developmental profile. The uptake of glutamate increased markedly with developmental time, while the uptake of GABA showed only a slight increase. Uptake of glycine by plasma membrane particles was very low and therefore not registered. The observed developmental increase in uptake of glycine by synaptic vesicles isolated from brain, supports previous reports indicating that glycine can be taken up by vesicles from non-glycine terminals.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

18.
Previous work by the authors had indicated that synaptosome-enriched preparations from the cerebral cortex of the rat contained a high-, a medium-, and a low-affinity uptake system for gamma-aminobutyric acid (GABA). The present study demonstrated that this phenomenon also prevailed in synaptosomes from rat diencephalon, mesencephalon, and cerebellum, although the Vmax values for the high- and medium-affinity systems in the cerebellum were very low relative to those of the other regions. When a different type of preparation containing nerve endings (glomeruli) was obtained from the cerebellum, it possessed a Vmax value for the high-affinity system that was more similar to that for the corresponding system in synaptosomes from the other brain regions. In contrast to the above situation, synaptosomes from rat olfactory bulb lacked the low-affinity uptake system, as did synaptosomes from dog olfactory bulb. The aspartate/glutamate uptake systems, as measured with D-aspartate, provided a regional pattern quite different from those of GABA uptake. Only two uptake systems, a high- and low-affinity system, were observed in all regions tested. All three GABA uptake systems were present in cortical synaptosomes from the mouse, hamster, and guinea pig, and all three systems were sodium dependent, energy dependent, temperature sensitive, and totally inhibited by nipecotic acid.  相似文献   

19.
Abstract— The high affinity uptake system for l -glutamate and l -aspartate in rat cerebral cortex may not be specific for these likely excitatory synaptic transmitters, as threo-3-hydroxy- dl -aspartate, l -cysteinesulphinate, l -cysteate and d -aspartate strongly inhibit the observed high affinity uptake of l -[3H]glutamate by rat brain slices in a manner consistent with linear competitive inhibition. These substances should therefore be considered as possible substrates for the transport system. Each of these four acidic amino acids excites central neurones in a manner similar to excitation induced by l -glutamate, and as each might occur in brain tissue, their possible synaptic role should be investigated.
l -Glutamate high affinity uptake was shown to be sodium-dependent, but under certain conditions appeared to be less sensitive than GABA uptake to changes in the external sodium ion concentration, and to drugs which modify sodium ion movements. This may be relevant to the efficiency of the glutamate uptake process during synaptic depolarization induced by glutamate.
l -Glutamate high affinity uptake was inhibited in a relatively nonspecific manner by a variety of drugs including mercurials and some electron transport inhibitors.  相似文献   

20.
Synaptosomes isolated from rat brain accumulated cysteic acid by a high-affinity transport system (Km = 12.3 +/- 2.1 microM; Vmax = 2.5 nmol mg protein-1 min-1). This uptake was competitively inhibited by aspartate (Ki = 13.3 +/- 1.8 microM) and cysteine sulfinate (Ki = 13.3 +/- 2.3 microM). Addition of extrasynaptosomal cysteate, aspartate, or cysteine sulfinate to synaptosomes loaded with [35S]cysteate induced rapid efflux of the cysteate. This efflux occurred via stoichiometric exchange of amino acids with half-maximal rates at 5.0 +/- 1.1 microM aspartate or 8.0 +/- 1.3 microM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half-maximal rates at 5.0 +/- 0.4 microM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000-fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high [K+] or veratridine, of the plasma membranes of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate, and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate, and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号