首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We previously cloned three endoglucanase genes, rce1, rce2, and rce3, that were isolated from Rhizopus oryzae as the first cellulase genes from a member of the subdivision Zygomycota. In this study, two cDNAs homologous to the rce1 gene, designated the mce1 and mce2 cDNAs, were cloned from Mucor circinelloides, a member of the subdivision Zygomycota. The mce1 cDNA encoded an endoglucanase (family 45 glycoside hydrolase) having one carbohydrate-binding module (CBM), designated MCE1, and the mce2 cDNA encoded the same endoglucanase having two tandem repeated CBMs, designated MCE2. The two cDNAs contained the same sequences but with a 147-bp insertion. The corresponding genomic mce gene consisted of four exons. The mce1 cDNA was created from exons 1, 3, and 4, and the mce2 cDNA was created from exons 1, 2, 3, and 4. These results indicate that the mce1 and mce2 cDNAs were created from one genomic mce gene by alternative splicing. MCE1 and MCE2, purified to apparent homogeneity from the culture supernatant of M. circinelloides, had molecular masses of 43 and 47 kDa, respectively. The carboxymethyl cellulase specific activity of MCE2 was almost the same as that of MCE1, whereas the Avicelase specific activity of MCE2 was two times higher than that of MCE1. Furthermore, MCE2, whose two tandem CBMs might be more effective for degradation of crystalline cellulose than one CBM, was secreted only at an early culture stage when crystalline cellulose was abundant.  相似文献   

2.
Three endoglucanase genes, designated the rce1, rce2, and rce3 genes, were isolated from Rhizopus oryzae as the first cellulase genes from the subdivision ZYGOMYCOTA: All the amino acid sequences deduced from the rce1, rce2, and rce3 genes consisted of three distinct domains: cellulose binding domains, linker domains, and catalytic domains belonging to glycosyl hydrolase family 45. The rce3 gene had two tandem repeated sequences of cellulose binding domains, while rce1 and rce2 had only one. rce1, rce2, and rce3 had various lengths of linker sequences.  相似文献   

3.
A new endoglucanase, designated BCE1, produced by Beltraniella portoricensis, was purified from the culture supernatant. The N-terminal amino acid sequence suggests that BCE1 belongs to family 45 glycoside hydrolase (family 45 endoglucanase). The molecular mass of BCE1 was found to be 40 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for the carboxymethyl cellulase (CMCase) activity of BCE1 was 4.5, and the optimum temperature was 55 degrees C. Among family 45 endoglucanases, RCE1 and RCE2 from Rhizopus oryzae, PCE1 from Phycomyces nitens, and EGL3 and EGL4 from Humicola grisea, BCE1 was most resistant to anionic surfactant and oxidizing agent. These results indicate that BCE1 might prove to be a useful enzyme in the detergent industry.  相似文献   

4.
5.
We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much higher than those of the other family 45 endoglucanases. By contrast, family 45 endoglucanases from Mucorales were less resistant to anionic surfactant and oxidizing agent, main components in detergents, than the other family 45 endoglucanases. RCE1 consists of two distinct modules, a catalytic module and a carbohydrate-binding module family 1 (CBM1), and these common specific characteristics were considered to due to the catalytic module, but not to the CBM1.  相似文献   

6.
In the detergent industry, fungal endoglucanases have been used to release microfibrils (defibrillation) from the surface of dyed cellulosic fabrics to enhance color brightness. Although endoglucanases for laundry use must have various properties, such as a neutral or alkaline optimum pH, resistance to anionic surfactants and oxidizing agents (main components in detergents), and high defibrillation activity, all-purpose endoglucanases have not been obtained yet. As a result of screening of endoglucanases, a new family 45 endoglucanase (family 45 glycoside hydrolase), designated STCE1, was obtained and purified to apparent homogeneity from the culture supernatant of Staphylotrichum coccosporum NBRC 31817. The molecular mass of STCE1 was 49 kDa. The optimum pH for the carboxymethyl cellulase activity of STCE1 was 6.0, and the optimum temperature was 60 degrees C. STCE1 was highly resistant to an anionic surfactant and an oxidizing agent. Furthermore, the defibrillation activities on dyed cotton and lyocell fabrics of STCE1 were higher than those of the other representative endoglucanases tested. These results indicate that STCE1 is an all-purpose enzyme for laundry use. A gene encoding STCE1, designated the stce1 gene, was cloned from S. coccosporum, and the complete sequence was determined. STCE1 consisted of three distinct domains: an N-terminal catalytic domain (family 45), a linker domain, and a C-terminal carbohydrate-binding module (family 1). The amino acid sequences of the catalytic domain of STCE1 were phylogenetically close to those of the family 45 endoglucanases EGL3, EGL4, and EGV from a Humicola sp. Hence, the stce1 gene was transferred into Humicola insolens and expressed. As a result, extremely high levels (0.90 mg protein per ml of culture supernatant, 27% of the total proteins) of the recombinant STCE1 were secreted as a mature form in the culture supernatant.  相似文献   

7.
Aquifex aeolicus is the hyperthermophilic bacterium known, with growth-temperature maxima near 95 degrees C. The cel8Y gene, encoding a thermostable endoglucanase (Cel8Y) from Aquifex aeolicus VF5, was cloned into a vector for expression and expressed in Escherichia coli XL1-Blue. A clone of 1.7 kb fragment containing endoglucanase activity, designated pKYCY100, was sequenced and found to contain an ORF of 978 bp encoding a protein of 325 amino acid residues, with a calculated molecular mass of 38,831 Da. This endoglucanase was designated cel8Y gene. The endoglucanase has an 18-amino-acid signal peptide but not cellulose-binding domain. The endoglucanase of A. aeolicus VF5 had significant amino acid sequence similarities with endoglucanases from glycosyl hydrolase family 8. The predicted amino acid sequence of the Cel8Y protein was similar to that of CMCase of Cellulomonas uda, BcsC of Escherichia coli, CelY of Erwinia chrysanthemi, and CMCase of Acetobacter xylinum. The molecular mass of Cel8Y was calculated to be 36,750 Da, which is consistent with the value obtained from result of CMC-SDS-PAGE of the purified enzyme. Cel8Y was thermostable, exhibiting maximal activity at 80 degrees C and pH optima of 7.0 and with half-lives of 2 h at 100 degrees C, 4 h at 90 degrees C.  相似文献   

8.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

9.
10.
Endo-beta-1,4-glucanase genes from Bacillus circulans and from B. polymyxa were cloned by direct expression by using bacteriophage M13mp9 as the vector. The enzymatic activity of the gene products was detected by using either the Congo red assay or hydroxyethyl cellulose dyed with Ostazin Brilliant Red H-3B. The B. circulans and B. subtilis PAP115 endo-beta-1,4-glucanase genes were shown to be homologous by the use of restriction endonuclease site mapping, DNA-DNA hybridization, S1 nuclease digestion after heteroduplex formation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein products. Analysis of the nucleotide sequence of 3.1 kilobase pairs of cloned B. polymyxa DNA revealed two convergently transcribed open reading frames (ORFs) consisting of 398 codons (endoglucanase) and 187 codons (ORF2) and separated by 374 nucleotides. The coding region of the B. polymyxa endoglucanase gene would theoretically produce a 44-kilodalton preprotein. Expression of the B. polymyxa endoglucanase in Escherichia coli was due to a fusion of the endoglucanase gene at codon 30 with codon 9 of the lacZ alpha-peptide gene. The B. polymyxa endoglucanase has 34% amino acid similarity to the Clostridium thermocellum celB endoglucanase sequence but very little similarity to endoglucanases from other Bacillus species. ORF2 has 28% amino acid similarity to the NH2-terminal half of the E. coli lac repressor protein, which is responsible for DNA binding.  相似文献   

11.
The nucleotide sequence of the cenB gene was determined and used to deduce the amino acid sequence of endoglucanase B (CenB) of Cellulomonas fimi. CenB comprises 1,012 amino acids and has a molecular weight of 105,905. The polypeptide is divided by so-called linker sequences rich in proline and hydroxyamino acids into five domains: a catalytic domain of 607 amino acids at the N terminus, followed by three repeats of 98 amino acids each which are greater than 60% identical, and a C-terminal domain of 101 amino acids which is 50% identical to the cellulose-binding domains of C. fimi cellulases Cex and CenA. A deletion mutant of the cenB gene encodes a polypeptide lacking the C-terminal 333 amino acids of CenB. The truncated polypeptide is catalytically active and, like intact CenB, binds to cellulose, suggesting that CenB has a second cellulose-binding site. The sequence of amino acids 1 to 461 of CenB is 35% identical, with a further 15% similarity, to that of a cellulase from avocado, which places CenB in cellulase family E. CenB releases mostly cellobiose and cellotetraose from cellohexaose. Like CenA, CenB hydrolyzes the beta-1,4-glucosidic bond with inversion of the anomeric configuration. The pH optimum for CenB is 8.5, and that for CenA is 7.5.  相似文献   

12.
In the detergent industry, fungal endoglucanases are used to release microfibrils from the surfaces of dyed cellulosic fabrics to enhance color brightness. Family 45 endoglucanase (glycoside hydrolase family 45, GH45) EGL3 from Humicola grisea is more resistant to anionic surfactants and oxidizing agents than family 45 endoglucanase RCE1 from Rhizopus oryzae, while in the present study, a catalytic domain of RCE1 had higher defibrillation activity on dyed cotton fabrics than did that of EGL3. To identify the amino acid regions involved in these properties, we compared the characteristics of RCE1, EGL3, and three chimeric endoglucanases, in which each of the three regions of the catalytic domain of EGL3 was replaced by the corresponding region of the catalytic domain of RCE1. Amino acids in the N-terminal region were involved in resistance to anionic surfactants and oxidizing agents. Furthermore, amino acids in the region adjacent to the N-terminal region were involved in releasing microfibrils and in binding to dyed cotton fabrics, indicating that the binding of the amino acids in this region might be important in the release of microfibrils from dyed cotton fabrics.  相似文献   

13.
The physical and enzymatic properties of noncellulosomal endoglucanase F (EngF) from Clostridium cellulovorans were studied. Binding studies revealed that the Kd and the maximum amount of protein bound for acid-swollen cellulose were 1.8 μM and 7.1 μmol/g of cellulose, respectively. The presence of cellobiose but not glucose or maltose could dissociate EngF from cellulose. N- and C-terminally truncated enzymes showed that binding activity was located at some site between amino acid residues 356 and 557 and that enzyme activity was still present when 20 amino acids but not 45 amino acids were removed from the N terminus and when 32 amino acids were removed from the C terminus; when 57 amino acids were removed from the C terminus, all activity was lost. EngF showed low endoglucanase activity and could hydrolyze cellotetraose and cellopentaose but not cellotriose. Activity studies suggested that EngF plays a role as an endoglucanase during cellulose degradation. Comparative sequence analyses indicated strongly that the cellulose binding domain (CBD) is different from previously reported CBDs.  相似文献   

14.
The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and beta- glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.  相似文献   

15.
The phytopathogenic bacterium Erwinia chrysanthemi secretes multiple isozymes of plant cell wall disrupting enzymes such as pectate lyase and endoglucanase. We cloned genomic DNA from Erwinia chrysanthemi PY35. One of the E. coli XL1-Blue clones contained a 5.1-kb BamHI fragment and hydrolyzed carboxymethyl cellulose and polygalacturonic acid. By subsequent subcloning, we obtained a 2.9-kb fragment (pPY100) that contained the pel gene responsible for CMCase and pectate lyase activities. The pel gene had an open reading frame (ORF) of 1,278 bp encoding 425 amino acids with a signal peptide of 25 amino acids. Since the deduced amino acid sequence of this protein was very similar to that of PelL of E. chrysanthemi EC16, we concluded that it belonged to the pectate lyase family EC 4.2.2.2, and we designated it PelL1. Sequencing showed that the PeIL1 protein contains 400 amino acids and has a calculated pI of 7.15 and a molecular mass of 42,925 Da. The molecular mass of PelL1 protein expressed in E. coli XL1-Blue, as analyzed by SDS-PAGE, appeared to be 43 kDa. The optimum pH for its enzymatic activity was 9, and the optimum temperature was about 40 decreased C.  相似文献   

16.
We have cloned an endoglucanase (EGI) gene and a cellobiohydrolase (CBHI) gene of Humicola grisea var. thermoidea using a portion of the Trichoderma reesei endoglucanase I gene as a probe, and determined their nucleotide sequences. The deduced amino acid sequence of EGI was 435 amino acids in length and the coding region was interrupted by an intron. The EGI lacks a hinge region and a cellulose-binding domain. The deduced amino acid sequence of CBHI was identical to the H. grisea CBHI previously reported, with the exception of three amino acids. The H. grisea EGI and CBHI show 39.8% and 37.7% identity with the T. Reesei EGI, respectively. In addition to TATA box and CAAT motifs, putative CREA binding sites were observed in the 5′ upstream regions of both genes. The cloned cellulase genes were expressed in Aspergillus oryzae and the gene products were purified. The optimal temperatures of CBHI and EGI were 60 °C and 55–60 °C, respectively. The optimal pHs of these enzymes were 5.0. CBHI and EGI had distinct substrate specificities: CBHI showed high activity toward Avicel, whereas EGI showed high activity toward carboxymethyl cellulose (CMC).  相似文献   

17.
In the detergent industry, fungal endoglucanases are used to release microfibrils from the surfaces of dyed cellulosic fabrics to enhance color brightness. Family 45 endoglucanase (glycoside hydrolase family 45, GH45) EGL3 from Humicola grisea is more resistant to anionic surfactants and oxidizing agents than family 45 endoglucanase RCE1 from Rhizopus oryzae, while in the present study, a catalytic domain of RCE1 had higher defibrillation activity on dyed cotton fabrics than did that of EGL3. To identify the amino acid regions involved in these properties, we compared the characteristics of RCE1, EGL3, and three chimeric endoglucanases, in which each of the three regions of the catalytic domain of EGL3 was replaced by the corresponding region of the catalytic domain of RCE1. Amino acids in the N-terminal region were involved in resistance to anionic surfactants and oxidizing agents. Furthermore, amino acids in the region adjacent to the N-terminal region were involved in releasing microfibrils and in binding to dyed cotton fabrics, indicating that the binding of the amino acids in this region might be important in the release of microfibrils from dyed cotton fabrics.  相似文献   

18.
19.
The wood decay fungus Phanerochaete chrysosporium has served as a model system for the study of lignocellulose conversions, but aspects of its cellulolytic system remain uncertain. Here, we report identifying the gene that encodes the glycoside hydrolase (GH) family 45 endoglucanase (EG) from the fungus, cloning the cDNA, determining its heterologous expression in the methylotrophic yeast Pichia pastoris, and characterizing the recombinant protein. The cDNA consisted of 718 bp, including an open reading frame encoding a 19-amino-acid signal peptide, a 7-amino-acid presequence at the N-terminal region, and a 180-amino-acid mature protein, which has no cellulose binding domain. Analysis of the amino acid sequence revealed that the protein has a low similarity (<22%) to known fungal EGs belonging to the GH family 45 (EGVs). No conserved domain of this family was found by a BLAST search, suggesting that the protein should be classified into a new subdivision of this GH family. The recombinant protein has hydrolytic activity toward amorphous cellulose, carboxylmethyl cellulose, lichenan, barley beta-glucan, and glucomannan but not xylan. Moreover, a synergistic effect was observed with the recombinant GH family 6 cellobiohydrolase from the same fungus toward amorphous cellulose as a substrate, indicating that the enzyme may act in concert with other cellulolytic enzymes to hydrolyze cellulosic biomass in nature.  相似文献   

20.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号