首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adenosine triphosphatase of the sucrose nonfermenting 2 protein family, androgen receptor-interacting protein 4 (ARIP4), modulates androgen receptor activity. To elucidate receptor-dependent and -independent functions of ARIP4, we have analyzed Arip4 gene-targeted mice. Heterozygous Arip4 mutants were normal. Arip4 is expressed mainly in the neural tube and limb buds during early embryonic development. Arip4-/- embryos were abnormal already at embryonic d 9.5 (E9.5) and died by E11.5. At E9.5 and E10.5, almost all major tissues of Arip4-null embryos were proportionally smaller than those of wild-type embryos, and the neural tube was shrunk in some Arip4-/- embryos. Dramatically reduced cell proliferation and increased apoptosis were observed in E9.5 and E10.5 Arip4-null embryos. Mouse embryonic fibroblasts (MEFs) isolated from Arip4-/- embryos ceased to grow after two to three passages and exhibited increased apoptosis and decreased DNA synthesis compared with wild-type MEFs. Comparison of gene expression profiles of Arip4-/- and wild-type MEFs at E9.5 revealed that putative ARIP4 target genes are involved in cell growth and proliferation, apoptosis, cell death, DNA replication and repair, and development. Collectively, ARIP4 plays an essential role in mouse embryonic development and cell proliferation, and it appears to coordinate multiple essential biological processes, possibly through a complex chromatin remodeling system.  相似文献   

2.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.  相似文献   

3.
4.
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgestation and defects characteristic of convergent extension mutants, including a shortened body axis, mediolaterally extended somites and an open neural tube. The chato mutation disrupts Zfp568, a Krüppel-associated box (KRAB) domain zinc-finger protein. Morphometric analysis revealed that the definitive endoderm of mouse wild-type embryos undergoes cell rearrangements that lead to convergent extension during early somite stages, and that these cell rearrangements fail in chato embryos. Although non-canonical Wnt signaling is important for convergent extension in the mouse notochord and neural plate, the results indicate that chato regulates body axis elongation in all embryonic tissues through a process independent of non-canonical Wnt signaling.  相似文献   

5.
We report here the characterization of a mutant mouse line with a specific gene trap event in the Mdm4 locus. Absence of Mdm4 expression results in embryonic lethality (10.5 days postcoitum [dpc]), which was rescued by transferring the Mdm4 mutation into a Trp53-null background. Mutant embryos were characterized by overall growth deficiency, anemia, improper neural tube closure, and dilation of lateral ventricles. In situ analysis demonstrated increased levels of p21(CIP1/Waf1) and lower levels of Cyclin E and proliferating cell nuclear antigen expression. Consistent with lack of 5-bromo-2'-deoxyuridine incorporation, these data suggest a block of mutant embryo cells in the G(1) phase of the cell cycle. Accordingly, Mdm4-deficient mouse embryonic fibroblasts manifested a greatly reduced proliferative capacity in culture. Moreover, extensive p53-dependent cell death was specifically detected in the developing central nervous system of the Mdm4 mutant embryos. These findings unambiguously assign a critical role for Mdm4 as a negative regulator of p53 and suggest that Mdm4 could contribute to neoplasias retaining wild-type Trp53. Finally, we provide evidence indicating that Mdm4 plays no role on cell proliferation or cell cycle control that is distinct from its ability to modulate p53 function.  相似文献   

6.
7.
Neural tube defects (NTDs), although prevalent and easily diagnosed, are etiologically heterogeneous, rendering mechanistic interpretation problematic. To date, there is evidence that mammalian neural tube closure (NTC) initiates and fuses intermittently at four discrete locations. Disruption of this process at any of these four sites may lead to a region-specific NTDs, possibly arising through closure site-specific genetic mechanisms. Although recent efforts have focused on elucidating the genetic components of NTDs, a void persists regarding gene identification in closure site-specific neural tissue. To this end, experiments were conducted to identify neural tube closure site-specific genes that might confer regional sensitivity to teratogen-induced NTDs. Using an inbred mouse strain (SWV/Fnn) with a high susceptibility to VPA- induced NTDs that specifically targets and disrupts NTC between the prosencephalon and mesencephalon region (future fore/midbrain; neural tube closure site II), we identified a VPA-sensitive closure site II-specific clone. Sequencing of this clone from an SWV neural tube cDNA library confirmed that it encodes the r1 subunit of the cell cycle enzyme ribonucleotide reductase (RNR). The abundance of rnr-r1 mRNA was significantly increased in response to VPA drug treatment. This upregulated expression was accompanied by a significant decrease in cellular proliferation in the closure site II neural tube region of the embryos, as determined by ELISA cellular proliferation assays performed on BrdU-pulsed neuroepithelial cells in vivo. We hypothesize that rnr-r1 plays a critical role in the development of VPA-induced exencephaly.  相似文献   

8.
9.
10.
X-linked Opitz syndrome (XLOS), caused by mutation in the MID1 gene, is a midline malformation syndrome with obvious craniofacial abnormalities. Because cranial neural crest cells (CNC) play a pivotal role in cranial morphogenesis, we examined the spatio-temporal expression of cMid1 in chick embryos and investigated if alterations in Mid1 protein function, specifically the ability of Mid1 to negatively regulate levels of protein phosphatase 2A (PP2A), affected CNC survival or migration. During the main phase of CNC migration (stage 9 to 11) cMid1 is strongly expressed within r2 and a subset of CNC in cranial mesenchyme at the level of r1/2 to the isthmus, but is not expressed in more caudal CNC streams. Inhibiting cMid1 function in r2 elevated PP2A levels. Overexpression of PP2A in r2 slowed CNC migration in vitro and in ovo and inhibited trigeminal gangliogenesis. Conversely in r4, forced expression of cMid1, or pharmacological inhibition of PP2A lowered PP2A levels. Inhibition of PP2A in r4 CNC in vitro up-regulated the disintegrin and metalloprotease ADAM10 and selectively increased CNC motility on fibronectin and collagen substrates, but not on laminin. In ovo, inhibiting PP2A activity in r4 increased CNC migration and hastened formation of the geniculate/vestibuloacoustic ganglion, comprising mostly epibranchial placode neuroblasts. Placodal neuroblast migration into the cranial mesenchyme is known to depend on the presence of r4 CNC and we show that inhibition of PP2A in r4 CNC causes premature breakdown of the epibranchial placode basement membrane and early immigration of placodal neuroblasts. In all cases, CNC proliferation and death were unaffected by altered PP2A levels. We propose that factors capable of altering PP2A activity, such as Mid1, affect CNC motility and matrix remodeling, thereby modulating craniofacial development.  相似文献   

11.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

12.
Han J  Ito Y  Yeo JY  Sucov HM  Maas R  Chai Y 《Developmental biology》2003,261(1):183-196
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.  相似文献   

13.
CPEB-mediated translation is important in early development and neuronal synaptic plasticity. Here, we describe a new eukaryotic initiation factor 4E (eIF4E) binding protein, Neuroguidin (Ngd), and its interaction with CPEB. In the mammalian nervous system, Ngd is detected as puncta in axons and dendrites and in growth cones and filopodia. Ngd contains three motifs that resemble those present in eIF4G, 4EBP, Cup, and Maskin, all of which are eIF4E binding proteins. Ngd binds eIF4E directly, and all three motifs must be deleted to abrogate the interaction between these two proteins. In injected Xenopus oocytes, Ngd binds CPEB and, most importantly, represses translation in a cytoplasmic polyadenylation element (CPE)-dependent manner. In Xenopus embryos, Ngd is found in both neural tube and neural crest cells. The injection of morpholino-containing antisense oligonucleotides directed against ngd mRNA disrupts neural tube closure and neural crest migration; however, the wild-type phenotype is restored by the injection of a rescuing ngd mRNA. These data suggest that Ngd guides neural development by regulating the translation of CPE-containing mRNAs.  相似文献   

14.
15.
16.
Kitagawa R  Law E  Tang L  Rose AM 《Current biology : CB》2002,12(24):2118-2123
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.  相似文献   

17.
Entry into mitosis is mediated by the phosphorylation of key cell cycle regulators by cyclin-dependent kinase 1 (Cdk1). In Xenopus embryos, the M-phase-promoting activity of Cdk1 is antagonized by protein phosphatase PP2A-B55. Hence, to ensure robust cell cycle transitions, Cdk1 and PP2A-B55 must be regulated so that their activities are mutually exclusive. The mechanism underlying PP2A-B55 inactivation at mitotic entry is well understood: Cdk1-activated Greatwall (Gwl) kinase phosphorylates Ensa/Arpp19, thereby enabling them to bind to and inhibit PP2A-B55. However, the re-activation of PP2A-B55 during mitotic exit, which is essential for cell cycle progression, is less well understood. Here, we identify protein phosphatase PP1 as an essential component of the PP2A-B55 re-activation pathway in Xenopus embryo extracts. PP1 initiates the re-activation of PP2A-B55 by dephosphorylating Gwl. We provide evidence that PP1 targets the auto-phosphorylation site of Gwl, resulting in efficient Gwl inactivation. This step is necessary to facilitate subsequent complete dephosphorylation of Gwl by PP2A-B55. Thus, by identifying PP1 as the phosphatase initiating Gwl inactivation, our study provides the molecular explanation for how Cdk1 inactivation is coupled to PP2A-B55 re-activation at mitotic exit.  相似文献   

18.
19.
The enteric nervous system (ENS) is critically important for many intestinal functions such as peristalsis and secretion. Defects in the embryonic formation of the ENS cause Hirschsprung disease (HSCR) or megacolon, a severe birth defect that affects approximately 1 in 5,000 newborns. One of the least understood aspects of ENS development are the cellular and molecular mechanisms that control chain migration of the ENS cells during their migration into and along the embryonic gut. We recently reported a mouse model of HSCR in which mutant embryos carrying a hypomorphic allele of the Phactr4 gene show an embryonic gastrointestinal defect due to loss of enteric neurons in the colon. We found that Phactr4 modulates integrin signaling and cofilin activity to coordinate the forces that drive enteric neural crest cell (ENCC) migration in the mammalian embryo. In this extra view, we briefly summarize the current knowledge on integrin signaling in ENCC migration and introduce the Phactr protein family. Employing the ENS as a model, we shed some light on the mechanisms by which Phactr4 regulates integrin signaling and controls the cell polarity required for directional ENCC migration in the mouse developing gut.  相似文献   

20.
The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号