共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of Genomic Regions Required for DNA Replication during Drosophila Embryogenesis 总被引:3,自引:2,他引:3 下载免费PDF全文
A collection of Drosophila deficiency stocks was examined by bromodeoxyuridine (BrdU) labeling of embryos to analyze the DNA replication patterns in late embryogenesis. This permitted us to screen 34% of the genome for genes that when absent in homozygous deficiencies affect the cell cycle or DNA replication. We found three genomic intervals that when deleted result in cessation of DNA replication in the embryo, 39D2-3;E2-F1, 51E and 75C5-7;F1. Embryos deleted for the 75C5-7;F1 region stop DNA replication at the time in embryogenesis when a G(1) phase is added to the mitotic cell cycle and the larval tissues begin to become polytene. Thus, this interval may contain a gene controlling these cell cycle transitions. DNA replication arrests earlier in embryos homozygous for deletions for the other two regions. Analysis of the effects of deletions in the 39D2-3;E2-F1 region on DNA replication showed that the block to DNA replication correlates with deletion of the histone genes. We were able to identify a single, lethal complementation group in 51E, l(2)51Ec, that is responsible for the cessation of replication observed in this interval. Deficiencies that removed one of the Drosophila cdc2 genes and the cyclin A gene had no effect on replication during embryogenesis. Additionally, our analysis identified a gene, pimples, that is required for the proper completion of mitosis in the post-blastoderm divisions of the embryo. 相似文献
2.
3.
Arrest of Micronuclear DNA Replication during Genomic Exclusion in Tetrahymena Produces Haploid Strains 下载免费PDF全文
Diploid cells of Tetrahymena thermophila were crossed to strain A*V, whose micronucleus is defective, to induce the unilateral transfer of gametic nuclei from the diploid cells to the A*V cells (round I of genomic exclusion). These haploid nuclei presumably undergo one endomitotic cycle and then become diploid with a G1 (2C) DNA content. However, further DNA replication from 2C to 4C was transiently arrested until the pairs separated. When endomitosis was blocked by treatment with cycloheximide during 6-8 hours of conjugation, the exconjugants of round I of genomic exclusion remained haploid. Competence for diploidization is apparently limited to some period of time after nuclear transfer. Blocking of diploidization during round I of genomic exclusion can be used as an efficient way to induce haploid strains in Tetrahymena. 相似文献
4.
E.M.M. Manders J. Stap J. Strackee R. van Driel J.A. Aten 《Experimental cell research》1996,226(2):328
Like many nuclear processes, DNA replication takes place in distinct domains that are scattered throughout the S-phase nucleus. Recently we have developed a fluorescent double-labeling procedure that allows us to visualize nascent DNA simultaneously with “newborn” DNA that had replicated earlier in the same nucleus during the same S-phase. Using this procedure we have shown that all DNA in a replication domain is replicated within 1 h (Manderset al.,1992,J. Cell Sci.103, 857–862). Here we extend these studies by analyzing the behavior of replication domains on a time scale of less than 1 h. We have carried out a series of double-labeling experiments in which we varied the time interval between nascent DNA and newborn DNA from 0 to 60 min. Subsequently, we determined from the confocal, 3D images the spatial position of replicated DNA domains and identified pairs of nearest neighbor domains containing newborn and nascent DNA, respectively. The distance between the centers of the two domains in a pair gradually increases. Accurate measurements show that domains containing nascent DNA and domains containing newborn DNA gradually separate from each other at a rate that is on the order of 0.5 μm/h. This indicates that either newly synthesized DNA moves away from sites of replication activity or the replication machinery is moving itself. This rate is essentially the same during early and late S-phase. 相似文献
5.
Ghata Singhal Elisabetta Leo Saayi Krushna Gadham Setty Yves Pommier Bayar Thimmapaya 《Journal of virology》2013,87(15):8767-8778
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events. 相似文献
6.
Hideaki Takata Tomo Hanafusa Toshiaki Mori Mari Shimura Yutaka Iida Kenichi Ishikawa Kenichi Yoshikawa Yuko Yoshikawa Kazuhiro Maeshima 《PloS one》2013,8(10)
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity. 相似文献
7.
Yilai Li Ziyuan Chen Lindsay A. Matthews Lyle A. Simmons Julie S. Biteen 《Biophysical journal》2019,116(4):684-693
The replisome is a multiprotein machine responsible for the faithful replication of chromosomal and plasmid DNA. Using single-molecule super-resolution imaging, we characterized the dynamics of three replisomal proteins in live Bacillus subtilis cells: the two replicative DNA polymerases, PolC and DnaE, and a processivity clamp loader subunit, DnaX. We quantified the protein mobility and dwell times during normal replication and following replication fork stress using damage-independent and damage-dependent conditions. With these results, we report the dynamic and cooperative process of DNA replication based on changes in the measured diffusion coefficients and dwell times. These experiments show that the replication proteins are all highly dynamic and that the exchange rate depends on whether DNA synthesis is active or arrested. Our results also suggest coupling between PolC and DnaX in the DNA replication process and indicate that DnaX provides an important role in synthesis during repair. Furthermore, our results suggest that DnaE provides a limited contribution to chromosomal replication and repair in vivo. 相似文献
8.
Disruption of Nuclear Lamin Organization Alters the Distribution of Replication Factors and Inhibits DNA Synthesis 总被引:13,自引:2,他引:13 下载免费PDF全文
Timothy P. Spann Robert D. Moir Anne E. Goldman Reimer Stick Robert D. Goldman 《The Journal of cell biology》1997,136(6):1201-1212
The nuclear lamina is a fibrous structure that lies at the interface between the nuclear envelope and the nucleoplasm. The major proteins comprising the lamina, the nuclear lamins, are also found in foci in the nucleoplasm, distinct from the peripheral lamina. The nuclear lamins have been associated with a number of processes in the nucleus, including DNA replication. To further characterize the specific role of lamins in DNA replication, we have used a truncated human lamin as a dominant negative mutant to perturb lamin organization. This protein disrupts the lamin organization of nuclei when microinjected into mammalian cells and also disrupts the lamin organization of in vitro assembled nuclei when added to Xenopus laevis interphase egg extracts. In both cases, the lamina appears to be completely absent, and instead the endogenous lamins and the mutant lamin protein are found in nucleoplasmic aggregates. Coincident with the disruption of lamin organization, there is a dramatic reduction in DNA replication. As a consequence of this disruption, the distributions of PCNA and the large subunit of the RFC complex, proteins required for the elongation phase of DNA replication, are altered such that they are found within the intranucleoplasmic lamin aggregates. In contrast, the distribution of XMCM3, XORC2, and DNA polymerase α, proteins required for the initiation stage of DNA replication, remains unaltered. The data presented demonstrate that the nuclear lamins may be required for the elongation phase of DNA replication. 相似文献
9.
Replication of DNA during F'Lac transfer 总被引:2,自引:0,他引:2
D Freifelder 《Biochemical and biophysical research communications》1966,23(4):576-582
10.
Singlet oxygen generation by UVA light exposure of endogenous photosensitizers 总被引:5,自引:0,他引:5 下载免费PDF全文
UVA light (320-400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), beta-nicotinamide adenine dinucleotide (NAD), and beta-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (PhiDelta = 0.54 +/- 0.07), FMN (PhiDelta = 0.51 +/- 0.07), and FAD (PhiDelta = 0.07 +/- 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue). 相似文献
11.
12.
In the “Replicon Theory”, Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A + T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A + T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts. 相似文献
13.
14.
15.
Jorge Cebrián Alicia Castán Víctor Martínez Maridian J. Kadomatsu-Hermosa Cristina Parra María José Fernández-Nestosa Christian Schaerer Pablo Hernández Dora B. Krimer Jorge B. Schvartzman 《The Journal of biological chemistry》2015,290(22):13725-13735
The dynamics of DNA topology during replication are still poorly understood. Bacterial plasmids are negatively supercoiled. This underwinding facilitates strand separation of the DNA duplex during replication. Leading the replisome, a DNA helicase separates the parental strands that are to be used as templates. This strand separation causes overwinding of the duplex ahead. If this overwinding persists, it would eventually impede fork progression. In bacteria, DNA gyrase and topoisomerase IV act ahead of the fork to keep DNA underwound. However, the processivity of the DNA helicase might overcome DNA gyrase and topoisomerase IV. It was proposed that the overwinding that builds up ahead of the fork could force it to swivel and diffuse this positive supercoiling behind the fork where topoisomerase IV would also act to maintain replicating the DNA underwound. Putative intertwining of sister duplexes in the replicated region are called precatenanes. Fork swiveling and the formation of precatenanes, however, are still questioned. Here, we used classical genetics and high resolution two-dimensional agarose gel electrophoresis to examine the torsional tension of replication intermediates of three bacterial plasmids with the fork stalled at different sites before termination. The results obtained indicated that precatenanes do form as replication progresses before termination. 相似文献
16.
Jakob Frimodt-M?ller Godefroid Charbon Karen A. Krogfelt Anders L?bner-Olesen 《PLoS genetics》2016,12(9)
Chromosome replication in Escherichia coli is in part controlled by three non-coding genomic sequences, DARS1, DARS2, and datA that modulate the activity of the initiator protein DnaA. The relative distance from oriC to the non-coding regions are conserved among E. coli species, despite large variations in genome size. Here we use a combination of i) site directed translocation of each region to new positions on the bacterial chromosome and ii) random transposon mediated translocation followed by culture evolution, to show genetic evidence for the importance of position. Here we provide evidence that the genomic locations of these regulatory sequences are important for cell cycle control and bacterial fitness. In addition, our work shows that the functionally redundant DARS1 and DARS2 regions play different roles in replication control. DARS1 is mainly involved in maintaining the origin concentration, whether DARS2 is also involved in maintaining single cell synchrony. 相似文献
17.
18.
19.
20.
Elcin Ozgur Goknur Guler Gorkem Kismali Nesrin Seyhan 《Cell biochemistry and biophysics》2014,70(2):983-991
This study investigated the effects of intermittent exposure (15 min on, 15 min off for 1, 2, 3, or 4 h, at a specific absorption rate of 2 W/kg) to enhanced data rates for global system for mobile communication evolution-modulated radiofrequency radiation (RFR) at 900- and 1,800-MHz frequencies on the viability of the Hepatocarcinoma cells (Hep G2). Hep G2 cell proliferation was measured by a colorimetric assay based on the cleavage of the tetrazolium salt WST-1 by mitochondrial dehydrogenases in viable cells. Cell injury was evaluated by analyzing the levels of lactate dehydrogenase (LDH) and glucose released from lysed cells into the culture medium. Morphological observation of the nuclei was carried out by 4′,6-diamidino-2-phenylindole (DAPI) staining using fluorescence microscopy. In addition, TUNEL assay was performed to confirm apoptotic cell death. It was observed that cell viability, correlated with the LDH and glucose levels, changed according to the frequency and duration of RFR exposure. Four-hour exposure produced more pronounced effects than the other exposure durations. 1,800-MHz RFR had a larger impact on cell viability and Hep G2 injury than the RFR at 900 MHz. Morphological observations also supported the biochemical results indicating that most of the cells showed irregular nuclei pattern determined by using the DAPI staining, as well as TUNEL assay which shows DNA damage especially in the cells after 4 h of exposure to 1,800-MHz RFR. Our results indicate that the applications of 900- and 1,800-MHz (2 W/kg) RFR cause to decrease in the proliferation of the Hep G2 cells after 4 h of exposure. Further studies will be conducted on other frequency bands of RFR and longer duration of exposure. 相似文献