首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Do thin spines learn to be mushroom spines that remember?   总被引:5,自引:0,他引:5  
Dendritic spines are the primary site of excitatory input on most principal neurons. Long-lasting changes in synaptic activity are accompanied by alterations in spine shape, size and number. The responsiveness of thin spines to increases and decreases in synaptic activity has led to the suggestion that they are 'learning spines', whereas the stability of mushroom spines suggests that they are 'memory spines'. Synaptic enhancement leads to an enlargement of thin spines into mushroom spines and the mobilization of subcellular resources to potentiated synapses. Thin spines also concentrate biochemical signals such as Ca(2+), providing the synaptic specificity required for learning. Determining the mechanisms that regulate spine morphology is essential for understanding the cellular changes that underlie learning and memory.  相似文献   

2.
Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis 1. The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases.  相似文献   

3.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

4.
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.  相似文献   

5.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

6.
Dendritic filopodia are thought to participate in neuronal contact formation and development of dendritic spines; however, molecules that regulate filopodia extension and their maturation to spines remain largely unknown. Here we identify paralemmin-1 as a regulator of filopodia induction and spine maturation. Paralemmin-1 localizes to dendritic membranes, and its ability to induce filopodia and recruit synaptic elements to contact sites requires protein acylation. Effects of paralemmin-1 on synapse maturation are modulated by alternative splicing that regulates spine formation and recruitment of AMPA-type glutamate receptors. Paralemmin-1 enrichment at the plasma membrane is subject to rapid changes in neuronal excitability, and this process controls neuronal activity-driven effects on protrusion expansion. Knockdown of paralemmin-1 in developing neurons reduces the number of filopodia and spines formed and diminishes the effects of Shank1b on the transformation of existing filopodia into spines. Our study identifies a key role for paralemmin-1 in spine maturation through modulation of filopodia induction.  相似文献   

7.
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats. The results showed that ELM exposure induced a decrease in the spine density in the dendrites of stellate neurons and the basal dendrites of pyramidal neurons at both 14 days and 28 days, which was largely due to the loss of the thin and branched spines. The alteration in the density of mushroom and stubby spines post ELM exposure was cell-type specific. For the stellate neurons, ELM exposure slightly increased the density of stubby spines at 28 days, while it did not affect the density of mushroom spines at the same time. In the basal dendrites of pyramidal neurons, we observed a significant decrease in the mushroom spine density only at the later time point post ELM exposure, while the stubby spine density was reduced at 14 days and partially restored at 28 days post ELM exposure. ELM exposure-induced reduction in the spine density in the apical dendrites of pyramidal neurons was only observed at 28 days, reflecting the distinct vulnerability of spines in the apical and basal dendrites. Considering the changes in spine number and shape are involved in synaptic plasticity and the MEC is a part of neural network that is closely related to learning and memory, these findings may be helpful for explaining the ELM exposure-induced impairment in cognitive functions.  相似文献   

8.
Modulation of hippocampal synaptic plasticity by glucocorticoids has been attracting much attention, due to its importance in stress responses. Dendritic spines are essential for memory storage processes. Here, we investigated the effect of dexamethasone (DEX), a specific agonist of glucocorticoid receptor (GR), on density and morphology of dendritic spines in adult male rat hippocampus by imaging of Lucifer Yellow-injected spines in slices. The application of 100 nM DEX (stressful high concentration) induced rapid modulation of the density and morphology of dendritic spines in CA1 pyramidal neurons within 1h. The total spine density increased from 0.88 spines/microm (control) to 1.36 spines/microm (DEX-treated). DEX significantly increased the density of thin and mushroom type spines, however only a slight increase was observed for stubby and filopodium type spines. Because the presence of 10 microM cycloheximide, an inhibitor of protein synthesis, did not suppress the DEX effect, these responses are probably non-genomic. Western immunoblot analysis demonstrated the localization of classical type GR in Triton-insoluble synaptosomal fractions (enriched in postsynaptic membranes) from hippocampal slices, suggesting a possible action site of DEX at spines.  相似文献   

9.
SNX26, a brain-enriched RhoGAP, plays a key role in dendritic arborization during early neuronal development in the neocortex. In mature neurons, it is localized to dendritic spines, but little is known about its role in later stages of development. Our results show that SNX26 interacts with PSD-95 in dendritic spines of cultured hippocampal neurons, and as a GTPase-activating protein for Cdc42, it decreased the F-actin content in COS-7 cells and in dendritic spines of neurons. Overexpression of SNX26 resulted in a GTPase-activating protein activity-dependent decrease in total protrusions and spine density together with dramatic inhibition of filopodia-to-spine transformations. Such effects of SNX26 were largely rescued by a constitutively active mutant of Cdc42. Consistently, an shRNA-mediated knockdown of SNX26 significantly increased total protrusions and spine density, resulting in an increase in thin or stubby type spines at the expense of the mushroom spine type. Moreover, endogenous expression of SNX26 was shown to be bi-directionally modulated by neuronal activity. Therefore, we propose that in addition to its key role in neuronal development, SNX26 also has a role in the activity-dependent structural change of dendritic spines in mature neurons.  相似文献   

10.
Structure, development, and plasticity of dendritic spines.   总被引:19,自引:0,他引:19  
Dendritic spines are distinguished by their shapes, subcellular composition, and synaptic receptor subtypes. Recent studies show that actin-dependent movements take place in spine heads, that spines emerge from stubby and shaft synapses after dendritic filopodia disappear, and that spines can form without synaptic activation, are maintained by optimal activation, and are lost with excessive activation or during degeneration.  相似文献   

11.
Dendritic spines are protrusions from the dendritic shaft that host most excitatory synapses in the brain. Although they first emerge during neuronal maturation, dendritic spines remain plastic through adulthood, and recent advances in the molecular mechanisms governing spine morphology have shown them to be exquisitely sensitive to changes in the micro-environment. Among the many factors affecting spine morphology are components and regulators of the extracellular matrix (ECM). Modification of the ECM is critical to the repair of injuries throughout the body, including the CNS. Matrix metalloproteinase (MMP)-7/matrilysin is a key regulator of the ECM during pathogen infection, after nerve crush and in encephalitogenic disorders. We have investigated the effects of MMP-7 on dendritic spines in hippocampal neuron cultures and found that it induces the transformation of mature, short mushroom-shaped spines into long, thin filopodia reminiscent of immature spines. These changes were accompanied by a dramatic redistribution of F-actin from spine heads into thick, rope-like structures in the dendritic shaft. Strikingly, MMP-7 effects on dendritic spines were similar to those of NMDA treatment, and both could be blocked by channel-specific antagonists. These findings are the first direct evidence that MMPs can influence the morphology of mature dendritic spines, and hence synaptic stability.  相似文献   

12.
Learning and memory are closely related to synaptic plasticity in neurons, associated with robust spine density and classical morphological patterns. Here, we investigated the effects of Undaria pinnatifida ethanol extract (UPE) on learning and spatial memory in mice. For behavioral studies, the passive avoidance test and radial-arm maze paradigm were used. With oral administration of UPE at an optimal concentration of 2 mg g?1 body weight, the latency time in the passive avoidance test was increased significantly (on average, 143 and 116 s on days 1 and 2, respectively; P < 0.01) versus the scopolamine induced memory impairment group (25 and 23 s on days 1 and 2, respectively). The working errors and latency time in the radial-arm maze decreased to 0.6 errors and 56 s (P < 0.05) compared with scopolamine-administered mice (1.0 error and 113 s) on day 2, respectively. Dendritic spine morphology of hippocampal neurons in the UPE-administered group (2 mg g?1 body weight) was analyzed using Golgi-impregnated tissue sections; the number of dendritic spines increased significantly (1.4-fold, versus control). Numbers of large mushroom and stubby spines also increased (1.8- and 1.7-fold, respectively, versus control). These findings indicate that U. pinnatifida has repairing effects on memory and behavioral disorders, probably through restoring spine density and morphology, and may thus have beneficial effects in the treatment of neurodegeneration.  相似文献   

13.
The development of dendritic spines with specific geometry and membrane composition is critical for proper synaptic function. Specific spine membrane architecture, sub-spine microdomains and spine head and neck geometry allow for well-coordinated and compartmentalized signaling, disruption of which could lead to various neurological diseases. Research from neuronal cell culture, brain slices and direct in vivo imaging indicates that dendritic spine development is a dynamic process which includes transition from small dendritic filopodia through a series of structural refinements to elaborate spines of various morphologies. Despite intensive research, the precise coordination of this morphological transition, the changes in molecular composition, and the relation of spines of various morphologies to function remain a central enigma in the development of functional neuronal circuits. Here, we review research so far and aim to provide insight into the key events that drive structural change during transition from immature filopodia to fully functional spines and the relevance of spine geometry to function.  相似文献   

14.
Dendritic filopodia are small protrusions on the surface of neuronal dendrites that transform into dendritic spines upon synaptic contact with axon terminals. The formation of dendritic spines is a critical aspect of synaptic development. Dendritic spine morphogenesis is characterized by filopodia shortening followed by the formation of mature mushroom-shaped spines. Here we show that activation of the EphB receptor tyrosine kinases in cultured hippocampal neurons by their ephrinB ligands induces morphogenesis of dendritic filopodia into dendritic spines. This appears to occur through assembly of an EphB-associated protein complex that includes focal adhesion kinase (FAK), Src, Grb2, and paxillin and the subsequent activations of FAK, Src, paxillin, and RhoA. Furthermore, Cre-mediated knock-out of loxP-flanked fak or RhoA inhibition blocks EphB-mediated morphogenesis of dendritic filopodia. Finally, EphB-mediated RhoA activation is disrupted by FAK knock-down. These data suggest that EphB receptors are upstream regulators of FAK in dendritic filopodia and that FAK-mediated RhoA activation contributes to assembly of actin filaments in dendritic spines.  相似文献   

15.
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.  相似文献   

16.
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.  相似文献   

17.
The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning.  相似文献   

18.
Dendritic spines are the major targets of excitatory synaptic input. They exist in a wide variety of shapes and sizes, from thin to mushroom-shaped to stubby. One of the striking characteristics of dendritic spines is their motile nature. Spines can undergo various structural modifications such as changes in density, shape, size, and motility. During development, spines are highly dynamic and many spines are formed and eliminated. As animals mature, most spines become stable and the vast majority of them can last throughout life. However, spine morphology can still undergo progressive changes. Structural dynamics of dendritic spines is thought to play important roles in synapse plasticity and information processing. Abnormal spine structures are often associated with malfunction of the nervous system.  相似文献   

19.
Dendritic spines are thought to compartmentalize second messengers like Ca2+. The notion of isolated spine signaling, however, was challenged by the recent finding that under certain conditions mobile endogenous Ca2+-binding proteins may break the spine limit and lead to activation of Ca2+-dependent dendritic signaling cascades. Since the size of spines is variable, the spine neck may be an important regulator of this spino-dendritic crosstalk. We tested this hypothesis by using an experimentally defined, kinetic computer model in which spines of Purkinje neurons were coupled to their parent dendrite by necks of variable geometry. We show that Ca2+ signaling and calmodulin activation in spines with long necks is essentially isolated from the dendrite, while stubby spines show a strong coupling with their dendrite, mediated particularly by calbindin D28k. We conclude that the spine neck geometry, in close interplay with mobile Ca2+-binding proteins, regulates the spino-dendritic crosstalk.  相似文献   

20.
The anterior dorsal ventricular ridge was examined in the American alligator, Alligator mississippiensis, with cresyl violet and Golgi-Kopsch preparations. Four cytoarchitectonic areas (lateral dorsolateral, medial dorsolateral, intermediolateral, and lateral) can be distinguished by variations in the density of neurons and their tendency to form clusters of neurons with apposed somata. Three distinct types of neurons are distributed throughout these areas. Juxtaependymal neurons lie near the ventricular surface and have dendritic fields paralleling the ependymal layer. Their dendrites bear a moderate density of spines. Spiny neurons all have stellate shaped dendritic fields and dendrites that bear dendritic spines, but they vary greatly in the density of spines and the thickness of their dendrites. A very spiny variety has a high spine density and relatively thick dendrites. A moderately spiny variety has a moderate spine density and thin dendrites. A sparsely spiny variety has a low spine density and thick dendrites. Aspiny neurons have a relatively large number of dendrites that form a gnarled dendritic field and lack spines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号