首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3-) cells and NKT-like (CD56+CD3+) cells.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies.

Results

The proportion of peripheral blood NKT-like (CD56+CD3+) cells in smokers with COPD (COPD subjects) was significantly lower (0.6%) than in healthy smokers (smokers) (2.8%, p < 0.001) and non-smoking healthy participants (HNS) (3.3%, p < 0.001). NK (CD56+CD3-) cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p < 0.001) as were NKT-like (CD56+CD3+) cells (16.7% vs 52.4% specific lysis, p < 0.001). Both cell types had lower proportions expressing both perforin and granzyme B. Blocking the action of perforin and granzyme B reduced the cytotoxic activity of NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells from smokers and HNS.

Conclusion

In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells in COPD subjects are reduced and that their cytotoxic effector function is defective.  相似文献   

2.

Background

Pre-transplant infusion of rabbit anti-T cell globulin (ATG) is increasingly used as prevention of graft-versus-host disease (GVHD) after allogeneic peripheral blood stem cell transplantation (PBSCT). However, the precise impact of pre-transplant ATG on immune recovery after PBSCT is still poorly documented.

Methods

In the current study, we compared immune recovery after myeloablative PBSCT in 65 patients who either received (n = 37) or did not (n = 28) pre-transplant ATG-Fresenius (ATG-F). Detailed phenotypes of circulating T, B, natural killer (NK) and invariant NKT (iNKT) cells were analyzed by multicolor flow cytometry at serial time-points from day 40 to day 365 after transplantation. Thymic function was also assessed by sjTREC quantification. Serious infectious events were collected up to 2 years post-transplantation.

Results

Pre-transplant ATG-F had a prolonged (for at least up to 1-year) and selective negative impact on the T-cell pool, while it did not impair the recovery of B, NK nor iNKT cells. Among T cells, ATG-F selectively compromised the recovery of naïve CD4+, central memory CD4+ and naïve CD8+ cells, while it spared effector memory T and regulatory T cells. Levels of sjTRECs were similar in both cohorts at 1-year after PBSCT, suggesting that ATG-F unlikely impaired thymopoiesis at long-term after PBSCT. Finally, the incidence and rate of serious infections were similar in both groups, while ATG-F patients had a lower incidence of grade II-IV acute graft-versus-host disease.

Conclusions

Pre-transplant ATG-F induces long-lasting modulation of the circulating T-cell pool after myeloablative PBSCT, that may participate in preventing graft-versus-host disease without deeply compromising anti-pathogen defenses.  相似文献   

3.

Background

CD8+ T cells (Cytotoxic T cells, Tc) are known to play a critical role in the pathogenesis of smoking related airway inflammation including chronic obstructive pulmonary disease (COPD). However, how cigarette smoke directly impacts systematic CD8+ T cell and regulatory T cell (Treg) subsets, especially by modulating muscarinic acetylcholine receptors (MRs), has yet to be well elucidated.

Methods

Circulating CD8+ Tc/Tregs in healthy nonsmokers (n = 15), healthy smokers (n = 15) and COPD patients (n = 18) were evaluated by flow cytometry after incubating with anti-CD3, anti-CD8, anti-CD25, anti-Foxp3 antibodies. Peripheral blood T cells (PBT cells) from healthy nonsmokers were cultured in the presence of cigarette smoke extract (CSE) alone or combined with MRs agonist/antagonist for 5 days. Proliferation and apoptosis were evaluated by flow cytometry using Ki-67/Annexin-V antibodies to measure the effects of CSE on the survival of CD8+ Tc/Tregs.

Results

While COPD patients have elevated circulating percentage of CD8+ T cells, healthy smokers have higher frequency of CD8+ Tregs. Elevated percentages of CD8+ T cells correlated inversely with declined FEV1 in COPD. CSE promoted the proliferation and inhibited the apoptosis of CD8+ T cells, while facilitated both the proliferation and apoptosis of CD8+ Tregs. Notably, the effects of CSE on CD8+ Tc/Tregs can be mostly simulated or attenuated by muscarine and atropine, the MR agonist and antagonist, respectively. However, neither muscarine nor atropine influenced the apoptosis of CD8+ Tregs.

Conclusion

The results imply that cigarette smoking likely facilitates a proinflammatory state in smokers, which is partially mediated by MR dysfunction. The MR antagonist may be a beneficial drug candidate for cigarette smoke-induced chronic airway inflammation.  相似文献   

4.

Background

We have previously shown that NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.

Methods

Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56+ cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.

Results

The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing both perforin and granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56+ cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV1. (r = -0.75; p = 0.0098).

Conclusion

We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.  相似文献   

5.

Background

End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR).

Methods

222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters.

Results

Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001).

Conclusion

Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR.  相似文献   

6.

Objective

Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.

Methods

Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.

Results

There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.

Conclusions

Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.  相似文献   

7.

Background

The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.

Methods

We used TF-OVA mice, which express ovalbumin in hepatocytes, to investigate the impact of Treg in a model of autoimmune hepatitis. Treg isolated from inflamed livers of TF-OVA mice were tested for their functionality in vitro. By employing double transgenic TF-OVAxDEREG (DEpletion of REGulatory T cells) mice we analyzed whether Treg-depletion aggravates autoimmune inflammation in the liver in vivo.

Results

CD25+Foxp3+ CD4 T cells accumulated in the liver in the course of CD8 T cell-mediated hepatitis. Treg isolated from inflamed livers were functional to suppress CD8 T-cell proliferation in vitro. Depletion of Treg in TF-OVAxDEREG mice dramatically amplified T cell-mediated hepatitis. Repeated administration of antigen-specific CD8 T cells led to a second wave of inflammation only after depletion of Treg.

Conclusion

Our data add to the evidence for an important role of Treg in autoimmune hepatitis and show that Treg reduce the severity of T-cell mediated hepatitis in vivo. They constitute a key immune cell population that actively maintains a tolerogenic milieu in the liver and protects the liver against repeated inflammatory challenges.  相似文献   

8.

Purpose

While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model.

Experimental Design

Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma.

Results

Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity.

Conclusion

Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant treatment for cancer patients with high-risk of local and systemic recurrence.  相似文献   

9.

Background

CD5+ B cells are a type of regulatory immune cells, though the involvement of this B cell subset in intestinal inflammation and immune regulation is not fully understood.

Methods

We examined the distribution of CD5+ B cells in various mouse organs. Expression levels of CD11b, IgM, and toll-like receptor (TLR)-4 and -9 in B cells were evaluated. In vitro, TLR-stimulated IL-10 production by colonic lamina propria (LP) CD5+ and CD5- B cells was measured. In vivo, mice with acute or chronic dextran sulfate sodium (DSS)-induced colonic injury were examined, and the frequency of colonic LP CD5+ B cells in those was assessed by flow cytometry.

Results

The expression level of TLR9 was higher in colonic LP CD5+ B cells as compared to CD5- B cells. Colonic LP CD5+ B cells produced greater amounts of IL-10 following stimulation with TLR ligands, especially TLR9, as compared with the LP CD5- B cells. Acute intestinal inflammation transiently decreased the frequency of colonic LP CD5+ B cells, while chronic inflammation induced a persistent decrease in colonic LP CD5+ B cells and led to a CD5- B cell-dominant condition.

Conclusion

A persistent altered mucosal B cell population caused by chronic gut inflammation may be involved in the pathogenesis of inflammatory bowel diseases.  相似文献   

10.

Objective

Monocytes and macrophages can infiltrate into tumor microenvironment and regulate the progression of tumors. This study aimed at determining the frequency of different subsets of circulating monocytes and tumor infiltrating macrophages (TIMs) in patients with colorectal cancer (CRC).

Methods

The frequency of different subsets of circulating monocytes was characterized in 46 CRC patients and 22 healthy controls (HC) by flow cytometry. The frequency of different subsets of macrophages was analyzed in TIMs from 30 tumor tissues and in lamina propria mononuclear cells (LPMCs) from 12 non-tumor tissues. The concentrations of plasma cytokines and carcinoembryonic antigen (CEA) were determined. The potential association of these measures with the values of clinical parameters was analyzed.

Results

In comparison with that in the HC, the percentages of circulating CD14+CD169+, CD14+CD169+CD163+ and CD14+CD169+CD206+ monocytes and TIMs CD14+CD169+ as well as IL-10+CD14+CD169+, but not IL-12+ CD14+CD169+ macrophages were significantly increased, accompanied by higher levels of plasma IL-10 in the CRC patients. The percentages of CD14+CD169+ circulating monocytes and TIM macrophages were associated with the stage of disease and correlated positively with the levels of plasma IL-10 and CEA in CRC patients.

Conclusion

Our data suggest that an increase in the frequency of CD14+CD169+ cells may be associated with the development and progression of CRC and is concomitant rise of both, pro-tumor (M2-like, IL-10 producing) and anti-tumor (M1-like, IL-12 producing) monocytes and infiltrating macrophages. The frequency of CD14+CD169+ circulating monocytes and infiltrating macrophages may serve as a biomarker for evaluating the pathogenic degrees of CRC.  相似文献   

11.

Background

Glucocorticoid (GC) resistance is a major barrier in COPD treatment. We have shown increased expression of the drug efflux pump, Pgp1 in cytotoxic/pro-inflammatory lymphocytes in COPD. Loss of lymphocyte co-stimulatory molecule CD28 (lymphocyte senescence) was associated with a further increase in their pro-inflammatory/cytotoxic potential and resistance to GC. We hypothesized that lymphocyte senescence and increased Pgp1 are also associated with down-regulation of the GC receptor (GCR).

Methods

Blood was collected from 10 COPD and 10 healthy aged-matched controls. Flow cytometry was applied to assess intracellular pro-inflammatory cytokines, CD28, Pgp1, GCR, steroid binding and relative cytoplasm/nuclear GCR by CD28+ and CD28null T, NKT-like cells. GCR localization was confirmed by fluorescent microscopy.

Results

COPD was associated with increased numbers of CD28nullCD8+ T and NKT-like cells. Loss of CD28 was associated with an increased percentage of T and NKT-like cells producing IFNγ or TNFα and associated with a loss of GCR and Dex-Fluor staining but unchanged Pgp1. There was a significant loss of GCR in CD8 + CD28null compared with CD8 + CD28+ T and NKT-like cells from both COPD and controls (eg, mean ± SEM 8 ± 3% GCR + CD8 + CD28null T-cells vs 49 ± 5% GCR + CD8 + CD28+ T-cells in COPD). There was a significant negative correlation between GCR expression and IFNγ and TNFα production by T and NKT-like cells(eg, COPD: T-cell IFNγ R = −.615; ) and with FEV1 in COPD (R = −.777).

Conclusions

COPD is associated with loss of GCR in senescent CD28null and NKT-like cells suggesting alternative treatment options to GC are required to inhibit these pro-inflammatory/cytotoxic cells.  相似文献   

12.

Background

CD8+ T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56+CD3+) and natural killer cells (NK cells, CD56+CD3) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum.

Methods/Principal Findings

After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8+ T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8+ T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers.

Conclusions

A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD.  相似文献   

13.

Background

Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown.

Methodology/Principal Findings

We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells.

Conclusions/Significance

Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease.  相似文献   

14.

Background

Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall survival. To achieve efficient killing of tumor cells, however, immunotherapy has to overcome cancer-associated strategies to evade the cytotoxic immune response. Whether CNS-PNETs can evade the immune response remains unknown.

Methods

We examined by immunohistochemistry the immune response and immune evasion strategies in pediatric CNS-PNETs.

Results

Here, we show that CD4+, CD8+, γδ-T-cells, and Tregs can infiltrate pediatric CNS-PNETs, although the activation status of cytotoxic cells is variable. Pediatric CNS-PNETs evade immune recognition by downregulating cell surface MHC-I and CD1d expression. Intriguingly, expression of SERPINB9, SERPINB1, and SERPINB4 is acquired during tumorigenesis in 29%, 29%, and 57% of the tumors, respectively.

Conclusion

We show for the first time that brain tumors express direct granzyme inhibitors (serpins) as a potential mechanism to overcome cellular cytotoxicity, which may have consequences for cellular immunotherapy.  相似文献   

15.

Background

Severely burned patients are highly susceptible to opportunistic infections and sepsis, owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been shown to preserve T cell function and improve survival during cecal ligation and puncture (CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superagonist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if any, studies have examined, in detail, the effect of burn injury and infection on the adaptive immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell populations and the effect of IL-15 SA treatment on the host response to infection.

Methods

Mice were subjected to a 35% total body surface area burn, followed by wound infection with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were characterized using flow cytometry. Bacterial clearance, organ injury and survival were also assessed.

Results

Burn wound infection led to a significant decline in total white blood cell and lymphocyte counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+ T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline and significantly increased cell numbers and activation, as determined by CD69 expression, of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15 SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and NKT cells and failed to improve bacterial clearance and survival.

Conclusion

Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15 SA does not augment host resistance to burn wound sepsis in mice despite inducing proliferation and activation of lymphocyte subsets.  相似文献   

16.

Background

Invariant natural killer T cells (iNKT cells) are a unique subset of T lymphocytes and are considered to play an important role in the development of allergic bronchial asthma. Recently, iNKT cells were shown to play an immunoregulatory role in CD4+ and CD8+ T cell-mediated adaptive immune response. Allergen-specific Th2 inflammatory responses are an important part of the adaptive immune response in asthma. However, the regulatory functions of the Th2 inflammatory response in asthma have not been studied in detail.

Method

In this study, we have investigated the regulatory functions of iNKT cells on the Th2 inflammatory response in an ovalbumin (OVA)-induced murine model of asthma.

Results

Our results demonstrate that α-Galactosylceramide (α-GalCer) administration activated iNKT cells but could not induce the Th2 inflammatory response in wild-type (WT) mice. In the OVA-induced asthma model, α-GalCer administration and adoptive transfer of iNKT cells significantly augmented the Th2 inflammatory responses, including elevated inflammatory cell infiltration in the lung and bronchoalveolar lavage fluid (BALF); increased levels of IL-4, IL-5, and IL-13 in the BALF and splenocyte culture supernatant; and increased serum levels of OVA-specific IgE and IgG1. In addition, the Th2 inflammatory response was reduced, but not completely abrogated in CD1d-/- mice immunized and challenged with OVA, compared with WT mice.

Conclusion

These results suggest that iNKT cells may serve as an adjuvant to enhance Th2 inflammatory response in an OVA-induced murine model of asthma.  相似文献   

17.

Background

Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients.

Methods and Findings

Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs.

Conclusions

In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod.  相似文献   

18.
19.

Background

Cutaneous leishmaniasis is a vector-borne disease that is in Ethiopia mainly caused by the parasite Leishmania aethiopica. This neglected tropical disease is common in rural areas and causes serious morbidity. Persistent nonhealing cutaneous leishmaniasis has been associated with poor T cell mediated responses; however, the underlying mechanisms are not well understood.

Methodology/Principal Findings

We have recently shown in an experimental model of cutaneous leishmaniasis that arginase-induced L-arginine metabolism suppresses antigen-specific T cell responses at the site of pathology, but not in the periphery. To test whether these results translate to human disease, we recruited patients presenting with localized lesions of cutaneous leishmaniasis and assessed the levels of arginase activity in cells isolated from peripheral blood and from skin biopsies. Arginase activity was similar in peripheral blood mononuclear cells (PBMCs) from patients and healthy controls. In sharp contrast, arginase activity was significantly increased in lesion biopsies of patients with localized cutaneous leishmaniasis as compared with controls. Furthermore, we found that the expression levels of CD3ζ, CD4 and CD8 molecules were considerably lower at the site of pathology as compared to those observed in paired PBMCs.

Conclusion

Our results suggest that increased arginase in lesions of patients with cutaneous leishmaniasis might play a role in the pathogenesis of the disease by impairing T cell effector functions.  相似文献   

20.

Objectives

Follicular helper T (Tfh) cells exert an important role in autoimmune diseases. Whether it might be involved in type 1 diabetes (T1D) is unknown. Our aim was to investigate the role of Tfh cells in patients with T1D and the effect of anti-CD20 monoclonal antibody (rituximab) on Tfh cells from T1D patients.

Patients and Methods

Fifty-four patients with T1D and 37 healthy controls were enrolled in the current study. 20 of those patients were treated with rituximab. The frequencies of circulating CD4+CXCR5+ICOS+T cells were analyzed by flow cytometry. The serum autoantibodies were detected by radioligand assay. The levels of IL-21, IL-6 and BCL-6 were assessed using ELISA and/or real-time PCR.

Results

Increased frequencies of circulating Tfh cells together with enhanced expression of IL-21 were detected in patients. The correlation between the frequencies of circulating Tfh cells and the serum autoantibodies or C-peptide level was comfirmed. After rituximab therapy, follow-up analysis demonstrated that the frequencies of circulating Tfh cell and serum IA2A were decreased. The levels of IL-21, IL-6 and Bcl-6 mRNA were decreased after treatment. Furthermore, beta cell function in 10 of 20 patients was improved.

Conclusions

These data indicate Tfh cells may participate in the T1D-relatede immune responses and B cells might play a role in the development of Tfh responses in the disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号