首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.  相似文献   

2.
3.
Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters) in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/106 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8×104 copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances.  相似文献   

4.
Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs) to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3) relative to control cows (n = 3). However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with “phages, prophages, transposable elements, and plasmids”, suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle), along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria). This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored.  相似文献   

5.
The Christchurch wastewater treatment plant uses a series of six oxidation ponds to reduce the bacterial load of treated effluent before it is discharged into the local estuary. To ensure that this discharge does not adversely affect water quality in the receiving environment, local regulations specify maximum levels in the discharge for a number of parameters, including enterococci. Between 2001 and 2006, regulations required fewer than 300 enterococci per 100 ml in summer. During this period, the discharge intermittently exceeded this limit, with unexplained levels of enterococci of up to 180,000/100 ml. Characterization of these enterococci by antibiotic resistance analysis showed that enterococci sampled over 4 months had almost identical resistance profiles. In contrast, enterococci from raw sewage and wildfowl from around the oxidation ponds had a diverse range of antibiotic resistance profiles that could be distinguished from each other and also from those of enterococci from the discharge. The hypothesis of a clonal nature of the enterococci in the discharge was supported by molecular genotype analysis, suggesting that these bacteria may have replicated in the pond environment rather than being reflective of breakthrough in the sewage treatment process or the result of recent wildfowl inputs to the ponds. This study highlights the usefulness of antibiotic resistance analysis in identifying this phenomenon and is the first report of apparent replication of a specific type of enterococci in an oxidation pond environment.  相似文献   

6.
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.  相似文献   

7.
The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.  相似文献   

8.
Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.  相似文献   

9.
10.
This study evaluated the potential for conversion of Class B to Class A biosolids with respect to salmonellae and fecal coliforms during solar drying in concrete lined drying beds. Anaerobically (8% solids) and aerobically (2% solids) digested Class B biosolids were pumped into field-scale drying beds, and microbial populations and environmental conditions were monitored. Numbers of fecal coliforms and salmonellae decreased as temperature and rate of desiccation increased. After 3 to 4 weeks, Class A requirements were achieved in both biosolids for the pathogens and the indicators. However, following rainfall events, significant increase in numbers was observed for both fecal coliforms and salmonellae. In laboratory studies, regrowth of fecal coliforms was observed in both biosolids and biosolid-amended soil, but the regrowth of salmonellae observed in the concrete-lined drying beds did not occur. These laboratory studies demonstrated that pathogens decreased in numbers when soil was amended with biosolids. Based on serotyping, the increased numbers of salmonellae seen in the concrete lined drying beds following rainfall events was most likely due to recolonization due to contamination from fecal matter introduced by animals and not from regrowth of salmonellae indigenous to biosolids. Overall, we conclude that the use of concrete-lined beds created a situation in which moisture added as rainfall accumulated in the beds, promoting the growth of fecal coliforms and salmonellae added from external sources.  相似文献   

11.
土壤中抗性基因的产生,扩散传播以及消减的研究进展   总被引:1,自引:0,他引:1  
近年来,土壤中残留的大量抗生素不可避免的导致耐药微生物和抗性基因的增加和扩散,引起一系列土壤污染和生态风险。作为一类新兴污染物,抗性基因的污染水平已经远远超出我们的预想,因此对土壤中抗性基因的分布水平、扩散传播及消减技术的研究刻不容缓。本文对国内外土壤中抗生素和抗性基因残留水平进行了总结分析,探讨了土壤中抗性基因的产生、扩散的内在动力和机制。同时,分析了土壤中抗性基因分布和扩散的影响因素,如:抗生素残留水平,土壤理化性质和环境条件等。在此基础上,探讨了土壤抗性基因阻隔和消减技术,包括传统降解方法:高温,光照催化、微波-H2O2-微生物联合处理技术等,并提出新型消解技术:取代活性基团、靶位修饰以及改变外排泵的通透性等。讨论未来在控制抗性基因生态风险,降低其在土壤中的丰度,有效阻截技术的发展趋势。  相似文献   

12.
为了解宁夏地区奶牛源耐甲氧西林金黄色葡萄球菌的肠毒素基因和耐药基因分布及其分子流行病学特征,本研究通过聚合酶链式反应(polymerase chain reaction, PCR)技术对前期分离于宁夏地区的9株奶牛源耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)进行了18种肠毒素基因和16种耐药基因的检测,同时采用脉冲场凝胶电泳(pulsed-field gel electrophoresis, PFGE)、正向重复序列(direct-repeat unit, dru)和辅助基因调节因子(accessory gene regulator, agr)分子分型技术对MRSA菌株进行分型研究。结果显示所有MRSA菌株均携带经典型肠毒素基因和新型肠毒素基因,共检出12种肠毒素基因,其中selk基因的检出率最高,达到了100%,未检出see、selj、selo、selp、ser和selu基因;11种耐药基因被检出,其中norA、gyrA、grlA和blaZ 4种基因的检出率均达到了100%,未检出tet (O)、optrA、Lin (A)、fexA和cfr基因。PFGE分型结果显示受试菌株间亲缘关系较近;dru分型检出dt11v和dt10a两种型,其中以dt11v(77.8%, 7/9)为主;agr分型主要为agr-Ⅰ型(88.9%, 8/9),agr-Ⅱ型仅有1株。研究表明宁夏地区奶牛源耐甲氧西林金黄色葡萄球菌(MRSA)中的肠毒素基因和耐药基因分布广泛,菌株间亲缘关系较近,agr-Ⅰ-dt11v为MRSA菌株中的流行基因型。这为以后宁夏地区奶牛源MRSA的产毒性、耐药性和分子流行病学特征的进一步研究提供理论依据。  相似文献   

13.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   

14.
This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.  相似文献   

15.
Novobiocin-supersensitive (NS) mutants which could not grow on plates containing 40 mug or less of novobiocin per ml were isolated from Escherichia coli strain JE1011 (derived from E. coli K-12). Most of these NS mutants were found to have incomplete lipopolysaccharides (LPS), and they lack phosphate diester bridges in their backbone structure, with or without total loss of heptose, to which the phosphate diester is linked, and consequently lack external outer-core oligosaccharides. The phosphate diester bridges in the LPS backbone are apparently very important in forming a cell surface structure resistant to the penetration of antibiotics such as novobiocin, spiramycin, and actinomycin D. NS mutants, with incomplete LPS, lacking phosphates in their backbone structure were found to be resistant to phage T4, and those which also lacked heptose were resistant to phages T4 and T7. In contrast to the generally accepted idea that resistances to phages T3, T4, and T7 are linked genetically, no NS mutant was found to be resistant to T3. The possible structures of the receptors for T4 and T7 are discussed. The positions of novobiocin-supersensitive genes on the chromosome of several of the NS mutants defective in LPS were mapped. The genes were designated lpcA (between ara and lac) and lpcB (between 55 min and 60 min). The latter seemed to be a group of several related genes.  相似文献   

16.
17.
18.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号