首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Verron 《Insectes Sociaux》1963,10(3):185-296
Résumé La stimulation exercée par les soldats est done assez faible sur les larves et sur les soldats eux-mêmes. Elle est plus nette sur les nymphes du dernier stade où elle varie avec l'importance de la source stimulante (fig. 82).Cf.Insectes Sociaux, 1963,X, n0 2, pp. 167–184.  相似文献   

2.
J. Kovoor 《Insectes Sociaux》1969,16(3):195-233
Sans résuméI., voirInsectes Sociaux, V, no 4, 1958.  相似文献   

3.
We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10–6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10–4 m and 10–3 m, ATP reduces NP o by 23% and 69%, respectively.Furthermore, since ADP (10–3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a -phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10–4 m) or by cGMP-dependent protein kinase (10–7 m) in the presence of 8-Br-cGMP (10–5 m) and ATP (10–4 m). The NSC channel is not sensitive to amiloride (10–4 m cytoplasmic and/or extracellular) but flufenamic acid (10–4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages.We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.The expert technical assistance of U. Fink and I. Doering-Hirsch is gratefully acknowledged. We thank A. Rabe and Dr. J. Disser for programming the computer software.This work was supported by a grant from the Deutsche Forschungsge-meinschaft (DFG grant Fr 233/9-1) and a grant from the National Institutes of Health (NIH grant DK-17433).  相似文献   

4.
The pollen morphology of the taxa belonging to the generaAetheorhiza Cass.,Launaea Cass.,Reichardia Roth andSonchus L. in the Iberian Peninsula has been studied with light and electron microscopy. The pollen is 3(-4)-zonocolporate and echinolophate (without polar lacunae, but in general with prelacunae), with equatorial ridges and 15–20 lacunae: 3–4 poral, 6–8 abporal and 6–8 paraporal. Small to medium size, P × E = 19–36 × 23–42 µm; sometimes two different sizes have been found. Exine 3–9 µm thick and ornamentation microreticulate and echinate. The results clearly show the relationships between genera. Moreno-Socías, E., Mejías, J. A., Díez, M. J., 1994: Morfología polínica deLactuceae (Asteraceae) en la Península Ibérica, I.Lactuca y géneros relacionados. — Acta Bot. Malacitana.19: 103–113.  相似文献   

5.
Summary Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10–3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10–3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 ] o . (8) Ouabain (10–4 m) caused a fast depolarization of –6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10–5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.  相似文献   

6.
Summary Microplasmodia ofPhysarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30mm K+, 4mm Ca++, 3mm Mg++, 18mm citrate buffer, pH 4.7, 22°C), the transmembrane potential differenceV m is around –100 mV and the membrane resistance about 0.25 m2.V m is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN, N 3 ),V m drops to about 0 mV. Under normal conditions,V m is very sensitive to external pH (pH o ), displaying an almost Nernstian slope at pH o =3. However, when measured during metabolic inhibition,V m shows no sensitivity to pH o over the range 3 to 6, only rising (about 50 mV/pH) at pH o =6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1mm of the sugar. Sugar-induced depolarization was insensitive to pH o . The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981,J. Membrane Biol. 63:165–190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.  相似文献   

7.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

8.
Hans Pfeiffer 《Protoplasma》1932,15(1):590-602
Zusammenfassung Neben einer Würdigung des mikro-kataphoretischen Verfahrens für die gestellte Aufgabe wird zuerst eine Übersicht über die Untersuchungsapparatur, über die zu beachtenden Fehlerquellen und über die benutzten Untersuchungsobjekte und ihre Behandlungsweise gegeben. Das Verfahren von L.Michaelis wird hinsichtlich der Elektroden durch Vorschläge von J.Gicklhobn und K.Umrath, hinsichtlich der Mikrokammer durch Verwendung des E.Busch'schen Durchfluß-Objektträgers zu verbessern gesucht.Die praktischen Versuche ergeben für die nackten Protoplasten vonSolanum nigrum den IEP bei einer CH von 1,6·10–5 oder wenig darunter, für jene vonVitis vinifera in der Zone zwischen 6,3·10–5 und 2,5·10–5. Der gesuchte Wert wird für die Stachelkugeln der beidenNitella- Arten nach zwei verschiedenen Untersuchungsweisen übereinstimmend zu 1,6·10–5 bis 3,2·10–6 angenommen, während er bei der untersuchten untergärigen Rasse vonSaccharomyces cerevisiae zwischen 1,6·10–5 und 2,2·10–5 liegen dürfte.Die Diskussion führt zu einer knappen Übersicht über die möglichen Beladungsursachen der Objekte und untersucht kurz die Anwendbarkeit des Kataphoreseversuches für weitere Ziele der Protoplasmaforschung (analytisch-chemischer Aufbau der Objekte, ihre intrazelluläre CH, Ladungswert der Protoplasten).Fortsetzung aus Protoplasma,11, 85–96;12, 268–278;14, 83–90, 90–96.  相似文献   

9.
Cultured mouse MTAL cells contain more mRNA encoding the Cl channel mcClC-Ka, which mediates CTAL Cl absorption, than mRNA encoding the Cl channel mmClC-Ka, which mediates MTAL Cl absorption. mmClC-Ka and mcClC-Ka have three functional differences: 1) mmClC-Ka open time probability, P o, increases with increasing cytosolic Cl, but variations in cytosolic Cl do not affect P o in mcClC-Ka; 2) mmClC-Ka is gated by (ATP + PKA), while (ATP + PKA) have no effect on P o in mcClC-Ka; and 3) mmClC-Ka channels have single-ion occupancy, while mcClC-Ka channels have multi-ion occupancy. Using basolateral vesicles from MTAL cells fused into bilayers, we evaluated the effects of 1 mM cytosolic phenylglyoxal (PGO), which binds covalently to lysine or arginine, on Cl channels. With PGO pretreatment, Cl channels were uniformly not gated either with increases in cytosolic-face Cl or with (ATP + PKA) at 2 mm cytosolic-face Cl; and they exhibited multi-ion occupancy kinetics typical for mcClC-Ka channels. Thus, in basolateral MTAL membranes, blockade of Cl access to arginine or lysine residues on mmClC-Ka by PGO results in Cl channels having the functional characteristics of mcClC-Ka channels.  相似文献   

10.
Summary The effects of several sulfamoyl benzoic acid derivatives on Na–K–Cl cotransport were investigated in winter flounder intestine. The relative efficacy (IC50 values) and order of potency of these derivatives were benzmetanide, 5×10–8 m> bumetanide 3×10–7 m>piretanide 3×10–6 m>furosemide 7×10–6 m> amino piretanide 1×10–5 3-amino-4-penoxy-5-sulfamoyl benzoic acid. Binding of [3H] bumetanide was studied in microsomal membranes from winter flounder intestine and compared to that in bovine kidney outer medulla. Binding was also studied in brush-border membranes from winter flounder intestine. The estimated values forK d and number of binding sites (n) were: bovine kidney,K d =1.6×10–7,n=10.5 pmol/mg protein; winter flounder intestine,K d 1.2×10–7,n=7.3 pmol/mg protein, and brush-border membranes from winter flounder,K d =5.3×10–7,n=20.4 pmol/mg protein. The estimatedK d for bumetamide binding to winter flounder brush-border membranes derived from association and dissociation kinetics was 6.8×10–7 m. The similarity in magnitudes of IC50 andK d for bumetanide suggests that the brush-border cotransporter is ordinarily rate-limiting for transmural salt absorption and that bumetanide specifically binds to the cotransporter. Measurement of bumetanide binding at various concentrations of Na, K and Cl showed that optimal binding required all three ions to be present at about 5mm concentrations. Higher Na and K concentrations did not diminish binding but higher Cl concentrations (up to 100mm Cl) inhibited bumetanide binding by as much as 50%. Still higher Cl concentrations (500 and 900mm) did not further inhibit bumetanide binding. Scatchard analysis of bumetanide binding at 5 and 100mm Cl concentrations showed that bothK d andn were lower at the higher Cl concentration (5mm Cl:K d =5.29×10–7 m,n=20.4 pmol/mg protein; 100mm Cl:K d =2.3×10–7 m,n=8.8 pmol/mg protein). These data suggest two possibilities: that bumetanide and Cl binding are not mutually exclusive (in contrast to pure competitive inhibition) and that they each bind to separate sites or that two distinct bumetanide binding sites exist, only one of which exhibits Cl inhibition of binding. This inhibition would then be consistent with a competitive interaction with Cl.  相似文献   

11.
Zusammenfassung Die Doppelbrechung der Cornealinse und der Rhabdomere im Facettenauge von Calliphora erythrocephala (MEIG.) wurde untersucht.Der Gangunterschied wurde in Schnitten parallel zur Ommatidienachse gemessen. Die Differenz der Brechungsindices — die Doppelbrechung — zwischen dem außerordentlichen und dem ordentlichen Strahl ist (n en o) = 0,0012. Die Cornealinse ist ein einachsig, negativ doppelbrechender Kristall. Die optische Achse verläuft parallel zur Ommenachse.Die Kristallkegel und die Rhabdomerenkappen sind isotrop. Die Rhabdomere selbst sind anisotrop. Der Gangunterschied in den Sehstäben 1–6 (50 nm) scheint größer zu sein als im siebenten Rhabdomer (18 nm). Die Rhabdomere der siebenten und achten Sehzelle liegen jedoch genau hintereinander in einer Achse und dieTubuli sind zueinander senkrecht orientiert. Polarisationsoptisch gesehen liegen die beiden Sehstäbe in Subtraktionsstellung. Die Doppelbrechung der Rhabdomere ist (n en o) = – 0,0004.
Investigations with polarized light on the eye of Calliphora erythrocephala (Meig.)
Summary The birefringency of the corneal lens and of the rhabdomeres in the compound eye of Calliphora erythrocephala (MEIG.) was investigated.The phase difference was measured in sections parallel to the axis of the ommatidium. The difference of the refractive indices — the birefringency — between the extraordinary and the ordinary beam is (n e – n o) = –0,0012. The corneal lens is a negative birefringent crystal. Its optical axis runs parallel to the axis of the ommatidium.The crystalline cones and the extracellular distal processes of the rhabdomeres are isotropic. The rhabdomeres are anisotropic. The phase difference along the rhabdomeres No. 1–6 (50 nm) seems to be higher than in the seventh (18 nm). As rhabdomere No. 8 is situated beneath rhabdomere No. 7 and the tubules of these two rhabdomeres are perpendicularly orientated, the phase differences are partially cancelled. The birefringency of the rhabdomeres is (n en o) = –0,0004.
  相似文献   

12.
Summary After swelling in hyposmotic solution, Ehrlich ascites tumor cells shrink towards their original volume. Upon restoration of isosmolality (300 mOsm) the cells initially shrink but subsequently recover volume. This regulatory volume increase (RVI) is completely blocked when [Na+] o or [Cl] o is reduced by 50% in the presence of normal [K+] o . With normal [NaCl] o but less than 2 mm [K+] o , not only is volume recovery blocked but the cells lose KCl and shrink. When [K+] o is increased to 5 mm there is a rapid net uptake of K+ and Cl which results in volume recovery. This suggests that the reswelling phase requires the simultaneous presence of Na+, K+, and Cl. Although ouabain has no effect on volume recovery, bumetanide completely blocks RVI by inhibiting a cotransport pathway that mediates the net uptake of Na+, K+ and Cl in the ratio of 1Na1K2Cl. Na+ that accumulates is then replaced by K+ via the Na/K pump.I wish to thank my colleague, Dr. Thomas C. Smith for advice and helpful comments during the course of these studies. The excellent technical assistance provided by Rebecca Corcoran-Merrill is gratefully acknowledged.This investigation was supported by Grant CA 32927 from the National Cancer Institute, U.S. Public Health Service.  相似文献   

13.
Summary The reaction of abdominal skins of the frog speciesRana temporaria on mucosal K+-containing solutions was studied in an Ussing-type chamber by recording transepithelial potential difference (PD), short-circuit current (SCC) and conductance (G). With Na-Ringer's as serosal medium, a linear correlation between PD and the logarithm of the mucosal K+-concentration ([K] o ) was obtained. The K+-dependent SCC saturated with increasing [K] o , and could quickly and reversibly be depressed by addition of Rb+, Cs+, and H+, Li+, Na+, and NH 4 + did not influence K+ current. A large scatter was obtained for kinetic parameters like the slope of the PD-log [K] o -line (18–36.5 mV/decade), the apparent Michaelis constant (13–200mm), and the maximal current of the saturable SCC (6–50 A·cm–2), as well as for the degree of inhibition by Cs+ ions. This seemed to be caused by a time-dependent change during long time exposure to high [K] o (more than 30 sec), thereby inducing a selectivity loss of K+-transporting structures, together with an increase in SCC andG and a decrease in PD. Short time exposure to K+-containing solutions showed a competitive inhibition of K+ current by Cs+ ions, and a Michaelis constant of 6.6mm for the inhibitory action of Cs+. Proton titration resulted in a decrease of K+ current at pH<3. An acidic membrane component (apparent dissociation constant 2.5×10–3 m) is virtually controlling K+ transfer. Reducing the transepithelial K+-concentration gradient by raising the serosal potassium concentration was accompanied by the disappearance of SCC and PD.  相似文献   

14.
Summary Studies are carried out on the presence ofTrichophyton indicumRandhawa &Sandhu 1963 in Rumanian soil and on some of its immunobiological properties. Recently the authors were able to demonstrate the presence of this fungus in Rumania, in soil samples from 4 different locations. In spite of the unsuccessful attempts to inoculate it with positive result in men and in test animals, the immunobiological properties of this fungus proved characteristic for a dermatophyte.
Résumé Les auteurs ont réussi à mettre en évidence dans le sol roumain la présence duTrichophyton indicumRandhawa &Sandhu 1963. Ce champignon a été isolé à partir d'échantillons de terre provenant de 4 régions différentes. Malgré la faillite des essais d'inoculation de ses cultures à l'homme et à l'animal, les propriétés immunobiologiques duT. indicum sont celles d'un dermatophyte vrai.
  相似文献   

15.
We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein. (v) Finally, Mn2+ entry during veratridine stimulation, documented by Fura-2 fluorescence quenching, may indicate activation of unspecific Me2+ channels by veratridine. Our data have some bearing on analysis of other cells, notably neurons, whose response to veratridine is of particular and continous interest. Received: 8 December 1998/Revised: 2 March 1999  相似文献   

16.
Summary A thermostable protease fromThermoactinomyces thalpophilus was purified to give a single protein band on disc PAGE with a molecular size of 55000 Da. Optimal proteolytic activity of the purified protease was at pH 6.0 and 70°C. The enzyme was maximally stable between pH 5.0 and 8.0 and retained 62% of its original activity at 70°C after 30 min. Temperature stability was not improved in the presence of Ca2+ (1mm). Enzyme activity was inhibited by AG+, Hg2+, Ba2+ and Co2+, partially inhibited byo-phenanthroline but not by diisopropylfluorophosphate (5mm).
Resumen Se purificó una proteína termoestable deThermoactinomyces thalpophilus que dió una sola banda proteica al someterla a una electroforesis en columna de poliacrilamida (PAGE) y un tamaño molecular de 55.000 Da. La actividad proteolítica de la proteína purificada era óptima a pH 6.0 y 70°C. El enzima tenía máxima estabilidad entre pH 5.0 y 8.0 y retuvo un 62% de su actividad original despues de 30 min at 70°C. La estabilidad térmica no mejoró en presencia de Ca2+ (1mm). La actividad enzimática fue Inhibida por Ag+

Résumé Une protéase thermostable deThermoactinomyces thalpophilus a été purifiée jusqu'à donner une bande protéique unique sur un disque PAGE avec un poids moléculaire de 55000 daltons. L'activé protéolytique optimum de la protéase purifiée se situe à pH 6.0 at à 70°C. L'enzyme présente son maximum de stabilité entre pH 5.0 et 8.0 et conserve 62% de son activité originelle après 30 min à 70°C. La stabilité à la température n'est pas améliorée en présence de Ca2+ 1mm. L'activité enzymatique est inhibée par Ag+, Hg2+, Ba2+ et Co2+. Elle est partiellement inhibée par l'o-phénanthroline mais elle n'est pas inhibée par le di-iso-propylfluorophosphate 5mm.
  相似文献   

17.
Ohne ZusammenfassungMit 20 AbbildungenHerrn Dr. habil. H.Buhr, Mühlhausen/Thür., zum 60. Geburtstage gewidmet.9. Mitt. überHeterodera-Arten. — Teil der Dissertation vonG. Sembdner, Techn. Univ. Dresden, 1961. —8. Mitt.Sembdner, G., Nematologica9, i. Druck (1963).  相似文献   

18.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

19.
Summary Internodal cells ofChara australis were made tonoplast-free by replacing the cell sap with EGTA-containing media; then the involvement of internal Cl and K+ in the excitation of the plasmalemma was studied.[Cl] i was drastically decreased by perfusing the cell interior twice with a medium lacking Cl. The lowered [Cl] i was about 0.01mm. Cells with this low [Cl] i generated action potential and showed anN-shapedV–I curve under voltage clamped depolarization like Cl-rich cells containing 13 or 29mm Cl.E m at the peak of the action potential was constant at [Cl] i between 0.01 and 29mm. The possibility that the plasmalemma becomes as permeable to other anions as to Cl during excitation is discussed.At [Cl] i higher than 48mm, cells were inexcitable. When anions were added to the perfusion medium to bring the K+ concentration to 100mm, NO 3 , F, SO 4 2– , acetate, and propionate inhibited the generation of action potentials like Cl, while methane sulfonate, PIPES, and phosphate did not inhibit excitability.The duration of the action potential depended strongly on the intracellular K+ concentration. It decreased as [K+] i (K-methane sulfonate) increased. Increase in [Na+] i (Na-methane sulfonate) also caused its decrease, although this effect was weaker than that of K+. The action of these monovalent cations on the duration of the action potential is the opposite of their action on the membrane from the outside (cf. Shimmen, Kikuyama & Tazawa, 1976,J. Membrane Biol. 30:249).  相似文献   

20.
Summary H+-coupled transport in plant and fungal cells is relatively insensitive to external pH (pH o ). H+-coupled Cl transport at the plasma membrane ofChara corallina was studied to explore the phenomena responsible for this insensitivity. Raising pH o from a control value of 7.5 to 9.0 results in a modest (2.5-fold) decline inJ max and increase inK m . Further increase in pH o results in a selective increase inJ max, in accordance with predictions from a reaction kinetic model of the transport system (Sanders, D., Hansen, U.-P., 1981.J. Membrane Biol. 58:139–153). Increase in cytosolic Cl concentration ([Cl] c ) also results in a selective decrease inJ max at pH o =7.5.Quantitative kinetic modeling of the results is not possible if it is assumed that the sole effect of pH o isvia mass action on the binding of external H+ to a transport site. If, instead, the dependence of cytosolic pH (pH c ) on pH o (Smith, F.A., 1984,J. Exp. Bot. 35:1525–1536) is taken into account along with the dependence of Cl influx on pH c (Sanders, D., 1980,J. Membrane Biol. 53:129–141), then the observed modest changes in Michaelis parameters can be accommodated by a reaction kinetic model. The quantitative parameters of the model yield respective pK a s of the internal and external H+-binding sites=7.85 and 7.2, respective dissociation constants of the internal and external Cl-binding sites=160 and 40 m, and an additional, kinetically transparent, H+-binding site with a pK a >8.0. The quantitative model independently predicts the response ofJ max andK m to acidic conditions.The results are discussed in terms of the general physiological requirement that fluxes through H+-coupled transport systems are relatively insensitive to environmental variation in pH o . It is proposed that (i) the weak (but finite) dependence of pH c on pH o , coupled with (ii) the strong dependence of H+-coupled transport on pH c are instrumental in endowing H+-coupled transport systems with a relative insensitivity to variation in pH o . This hypothesis might also explain why pH c in plants and fungi is not acutely controlled with respect to variation of pH o .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号