首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic inhibitors were added to a culture medium inoculated with theramlly stressed Vibrio parahaemolyticus to obtain information pertaining to biosynthetic processes required for recovery from heat damage. Ribonucleic acid and protein syntheses, in addition to membrane repair, were required during recovery of injured cells. Neither nucleic acid nor Mg2+ leakage was noted to occur during the time cells were subjected to heat stress. Studies revealed that Mg2+ was apparently taken up by cells of V. parahaemolyticus during the first 30 min after thermal treatment, indicating a possible increased requirement for Mg2+ for membrane and/or ribosome stability and repair.  相似文献   

2.
Transformation in Escherichia coli: stages in the process.   总被引:6,自引:5,他引:1       下载免费PDF全文
Transformation experiments with Escherichia coli recipient cells and linear chromosomal deoxyribonucleic acid (DNA) are reported. E. coli can be rendered competent for DNA uptake by a temperature shock (0 degrees C leads to 42 degrees C leads to 0 degrees C) of the recipient cells in the presence of a high concentration of either Ca2+ or Mg2+ ions. Uptake of DNA into a deoxyribonuclease-resistant form, for which the presence of Ca2+ is essential, was possible during the temperature shock but appeared to occur most readily after the heat shock during incubation at 0 degrees C. When DNA was added to cells that had been heat shocked in the presence of divalent cations only, DNA uptake also occurred. This suggests that competence induction and uptake may be regarded as separate stages. Under conditions used to induce competence, we observed an extensive release of periplasmic enzymes, probably reflecting membrane damage induced during development of competence. After the conversion of donor DNA into a deoxyribonuclease-resistant form, transformants could be selected. It appeared that incubation, before plating, of the transformation mixture in a medium containing high Ca2+ and Mg2+ concentrations and supplemented with all growth requirements increased the transformation frequency. This incubation probably causes recovery of physiologically labile cells.  相似文献   

3.
The fluorescent dye 1-N-phenylnaphthylamine permeated Escherichia coli cells after exposure to a heat stress at 55 degrees C in Tris/Mg2+ buffer, pH 8.0. The rate of dye permeation increased with time during heat treatment and decreased gradually during subsequent incubation at 37 degrees C in a minimal medium. The initial level of rapid adsorption of the dye also increased with heating time, although it remained roughly constant during post-heating incubation. The results obtained suggest that the permeability barrier to the dye in the outer membrane was damaged by heat stress and was repaired after sublethal heating. RNA, protein and lipid syntheses, as well as an energy-yielding process, appeared to be necessary for the repair of impermeability to the dye.  相似文献   

4.
Cells of Staphylococcus aureus heated at 52 degrees C in magnesium-chelating buffers [pH 7.2, 50 mM potassium phosphate or 50 mM tris(hydroxymethyl)-aminomethane containing 1 mM ethylenediaminetetraacetic acid] leaked 260-nm absorbing material, shown to be RNA, and suffered destruction of their ribosomes. These cells did not regain their salt tolerance when repair was carried out in the presence of actinomycin D (5 microgram/ml). Cells similarly heated in magnesium-conserving buffers [pH 7.2, 50 mM tris(hydroxymethyl)aminomethane containing 10 mM MgCl2 or piperazine buffer] did not leak RNA, suffered no ribosomal damage when heated for 15 min, and recovered, at least partially, in the presence of actinomycin D. Ribosomal damage, is therefore, a consequence of Mg2+ loss and is not an effect of heat per se. Cells suspended in either Mg2+-chelating or Mg2+-conserving buffers lost salt tolerance to about the same extent during heating at 52 degrees C. Therefore, sublethal heat injury can not be attributed to ribosomal damage.  相似文献   

5.
The addition of 0.6 M sucrose of 0.016 M Mg2+ to the enumeration medium was required for early expression of heat resistance (10 min at 70 degrees C) in stage V Bacillus cereus forspores. The addition of Mg2+ to the sporulation medium did not remove this requirment for sucrose of Mg2+. The heat damage did not affect forespore germination or outgrowth, but injured cells in the absence of sucrose or Mg2+ were not capable of cell division. The heat-induced sublethal damage apparently affected the forspore component(s) that could be repaired or was capable of normal function in the presence of added Mg2+ or sucrose.  相似文献   

6.
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.  相似文献   

7.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

8.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

9.
Staphylococcus aureus S6 sublethally heated at 52 degrees C for 15 min to 0-1 M-potassium phosphate buffer pH 7-2, lost neither the ribitol teichoic acid of the wall nor the glycerol teichoic acid of the membrane. Hurst et al. (1974) showed that this heating caused 40% loss of the cellular Mg, and we now report the loss of 65% of the ester-bound D-alanine of teichoic acid. Repair from sublethal heat injury, measured by the return of salt tolerance, occurs in a simple no-growth medium provided that the cell concentration is less than 5 x 10(8)/ml. During repair, D-alanine is rapidly synthesized. Fully-repaired cells contain four times more D-alanine than do freshly-injured cells. Magnesium is present in the medium at only 3 x 10(-6) M, yet the cellular Mg concentration returns to normal within 1 h of incubation, even in the presence of EDTA. The results suggest that repair occurs in two stages. Soon after injury, in the absence of the competitive effect of D-alanine, Mg is strongly bound to teichoic acid. In repaired or uninjured cells Mg is less strongly bound. The implications of these findings are discussed in relation to the cation-binding function of teichoic acid.  相似文献   

10.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

11.
Ca2+ has been recently reported to be required for high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). In the present investigation low concentrations of the Ca2+ ionophores, A23187 and ionomycin, were found to rapidly suppress the Ca2+-dependent component of protein synthesis in GH3 cells. More ionophore was required to inhibit amino acid incorporation into protein as extracellular Ca2+ was increased. Pre-existing inhibitions of protein synthesis produced by low concentrations of ionophore at low extracellular Ca2+ concentrations were reversed by adjustment to high extracellular Ca2+. Treatment with ionophore reduced the cellular contents of polysomes and 43 S preinitiation complex to values equivalent to those found for Ca2+-depleted cells. Average ribosomal transit times were unaffected by ionophore, and treated cells retained the ability to accumulate polysomes when incubated with cycloheximide. Cell types, such as HeLa and Chinese hamster ovary, that normally display only a modest Ca2+-dependent component of protein synthesis, manifested a strong underlying Ca2+ dependence in amino acid incorporation and polysome formation following treatment with low concentrations of ionophore. Protein synthesis in GH3 or HeLa cells during recovery from heat shock and arsenite treatment was not affected by cellular Ca2+ depletion or ionophore treatment. On the basis of these results, Ca2+ ionophore is proposed to inhibit Ca2+-dependent translational initiation through facilitating the mobilization of sequestered intracellular Ca2+.  相似文献   

12.
Treatment of plasma membrane isolated from murine plasmocytoma MOPC 173 with an EDTA-containing buffer resulted in a 300-fold increase in sensitivity of (Na+ + K+)-stimulated Mg2+-ATPase to ouabain. This phenomenon was associated with the solubilization by EDTA of phospholipid free proteins (approx. 30 000-34 000 daltons) from the cytoplasmic face of the plasma membrane and with removal of about 90% of the membrane bound Ca2+. The recovery of the original resistance to ouabain required specifically Ca2+ and was associated with a binding of the solubilized proteins to the membrane.  相似文献   

13.
The superoxide-forming NADPH oxidase of human neutrophils was studied in subcellular fractions of unstimulated cells. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions: alpha, azurophil granules; beta, mostly specific granules; gamma, plasma membrane, and cytosol. NADPH-dependent O2-. formation by these fractions was quantitated as the rate of superoxide dismutase-inhibitable reduction of ferricytochrome c. In the presence of cytosol, NADPH, and either arachidonic acid (optimum 90 microM) or sodium dodecyl sulfate (optimum 160 microM), 70-75% of the oxidase was in the beta fraction and about 25% was in the gamma fraction. A similar distribution was found for cytochrome b559 and FAD, two putative components of the oxidase. The reaction rates observed with arachidonic acid activation were sufficient to account for 25-75% of the O2-. generated by intact neutrophils. The properties of the beta and gamma enzymes were similar and closely resembled those of the oxidase in intact neutrophils or disrupted prestimulated cells. These included resistance to azide and cyanide, a pH optimum of 7.4, and a preference for NADPH (Km approximately 40-45 microM) rather than NADH (Km approximately 2.5 mM) as the electron donor. The combination of beta and gamma fractions displayed additive activity. The activatable oxidase required Mg2+ but not Ca2+. ATP was required for maximum reaction rates. When beta and gamma membranes were preincubated with cytosol and arachidonic acid in the presence of millimolar Mg2+ and then ultracentrifuged membrane-bound O2-. -forming activity was recovered in the pellet and the enzyme required only NADPH (i.e. no cytosol, arachidonic acid, or Mg2+) for expression of activity. These data suggest that cytosol contains a Mg2+-dependent oxidase-activating factor. Molecular sieve chromatography of cytosol indicated a single peak of activity (i.e. ability to activate O2-. generation by beta and/or gamma fraction) eluting with molecules of about 10,000 daltons.  相似文献   

14.
Photosynthetic membrane fragments were prepared from Anacystic nidulans by French pressure cell disruption. Ascorbate was required to stabilize photophosphorylation activity in membranes kept at near 0 degrees C. Divalent cations were required during mechanical disruption and during assays for Photosystem II activity, with Ca2+ serving best. The rate of photophosphorylation was severely inhibited by Ca2+ during assays. Results suggest that best rates are achieved when photosynthetic membranes contain Ca2+ exposed to the interior surface, facilitating Photosystem II activity, and Mg2+ exposed to the exterior surface during assays, facilitating photophosphorylation activity.  相似文献   

15.
Suspensions of Staphylococcus aureus MF-31 injured by heat treatment at 54 C for 15 min produced coagulase during recovery in Trypticase Soy Broth. Coagulase also was produced by injured cells during recovery in a medium that did not support growth. Coagulase synthesis during recovery was independent of the molar strength of the buffer in which the cells were injured, the age of the cells, and the degree of injury. Return of salt tolerance and coagulase production required glucose, amino acids, and phosphate in the recovery medium. Vitamins stimulated coagulase production, but did not affect recovery. Although coagulase production was not necessary for repair of thermal injury to S. aureus MF-31, its detection was interpreted as an indicator of protein synthesis.  相似文献   

16.
Huynh C  Andrews NW 《EMBO reports》2005,6(9):843-847
Ca2+-regulated exocytosis of lysosomes was previously shown to be required for the repair of plasma membrane wounds. The small chemical vacuolin-1 alters the morphology of lysosomes without affecting the ability of cells to reseal their plasma membrane after injury. On the basis of a failure to detect Ca2+-triggered lysosomal exocytosis in vacuolin-1-treated cells, a recent study proposed that lysosomes are dispensable for resealing. Here, we show that vacuolin-1, despite altering lysosome morphology, does not inhibit the exocytosis of lysosomes induced by exposure to a Ca2+ ionophore, or by plasma membrane wounding. Thus, lysosomes cannot be excluded as agents of membrane repair in vacuolin-1-treated cells.  相似文献   

17.
The Mg2+ fluorescent dye mag-fura 2, entrapped in cells or organelles, has frequently been used for dual excitation ratio-metric determinations of free ionic Mg2+ concentrations in eukaryotic, mostly mammalian cells. Here we report its successful application to measure free Mg2+ concentrations ([Mg2+]i) in Salmonella enterica cells. When kept in nominally Mg2+ free buffer (resting conditions), the [Mg2+]i of wild-type cells has been determined to be 0.9 mM. An increase in the external Mg2+ concentration ([Mg2+]e) resulted in a rapid increase of [Mg2+]i, saturating within a few seconds at about 1.5 mM with [Mg2+]e of 20 mM. In contrast, cells lacking the Mg2+ transport proteins CorA, MgtA, MgtB failed to show this rapid increase. Instead, their [Mg2+]i increased steadily over extended periods of time and saturated at concentrations below those of wild-type cells. Mg2+ uptake rates increased more than 15-fold when corA was overexpressed in these mutant cells. Uptake of Mg2+ into corA expressing cells was strongly stimulated by nigericin, which increased the membrane potential DeltaPsi at the expense of DeltapH, and drastically reduced by valinomycin, which decreased the membrane potential DeltaPsi. These results reveal mag-fura 2 as a useful indicator to measure steady-state [Mg2+]i values in resting bacterial cells and to determine Mg2+ uptake rates. They confirm the role of CorA as the major Mg2+ transport protein and reveal the membrane potential as driving force for Mg2+ uptake into S. enterica cells.  相似文献   

18.
Adenosine 5'-triphosphate (ATP) synthesis driven by an artificially imposed membrane potential in right-side-out membrane vesicles of Escherichia coli was investigated. Membrane vesicles prepared in the presence of adenosine diphosphate were loaded with K+ by incubation with 0.5 M potassium phosphate. Addition of valinomycin resulted in the synthesis of 0.2 to 0.3 nmol of ATP/mg of membrane protein, whereas no synthesis was observed after addition of nigericin. Addition of K+, dicyclohexylcarbodiimide, carbonylcyanide p-trifluoromethoxyphenylhydrazone, or azide to the assay buffer inhibited ATP synthesis. Adenosine diphosphate and Mg2+ were found to be required. Ca2+, which can replace Mg2+ for the hydrolytic activity of the Mg2+-adenosine triphosphatase (ATPase) (EC 3.6.1.3), could not replace Mg2+ in the synthetic reaction and, in fact, inhibited ATP synthesis even in the presence of Mg2+. Strain NR-70, a mutant lacking the Mg2+-ATPase, was unable to synthesize ATP using an artificially imposed membrane potential. Additionally, the Mg2+-ATPase was found to contain tightly bound ATP.  相似文献   

19.
An inhibitor protein of synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was purified to apparent homogeneity from rat cerebrum by a molecular weight cut followed by chromatography of cytosol proteins with molecular weights between 10 000 and 3500 on DEAE-Sephadex at pH 5.2. The inhibitor could be partially inactivated by proteinases and dithiothreitol, but was heat-stable. Gel filtration gave a molecular weight of about 6000. Like the (Ca2+ + Mg2+)-ATPase inhibitor protein isolated from erythrocytes, the inhibitor from brain contains a characteristic high proportion of glutamic acid (36%) and glycine (37%) residues. Synaptic plasma membrane Mg2+-ATPase and microsomal membrane (Ca2+ + Mg2+)-ATPase did not respond to the inhibitor. Synaptic plasma membrane and erythrocyte membrane (Ca2+ + Mg2+)-ATPases, however, were affected. Inhibitory influence on synaptic membrane (Ca2+ + Mg2+)-ATPase was reversible, since inhibition could be relieved upon removal of inhibitor from saturable sites on the membrane. The inhibitor is not a calmodulin-binding protein, since the concentration of calmodulin for half-maximal activation of the ATPase was unaffected by its presence. Mode of inhibition of the (Ca2+ + Mg2+)-ATPase by the inhibitor was non-competitive.  相似文献   

20.
1. Activity of the (Ca2+ + Mg2+)-ATPase of erythrocyte membrane may be enhanced by a cytoplasmic protein activator. The presence of Ca2+ is necessary for the ionic strength-dependent interaction between the erythrocyte membrane and the activator. This is true no matter the purity of activator (unfractionated hemolysis supernatant or partially purified activator) or the major source of ionic strength (imidazole or NaCl). 2. When the endogenous activator enhances (Ca2+ + Mg2+)-ATPase activity of the erythrocyte membrane, there is a physical association between activator and membrane. This association is not disrupted by a decrease in ionic strength to 0.005 but is reversed by exposure to 5 mM ethyleneglycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. 3. Activator binding necessary for enhancement of (Ca2+ + Mg2+)-ATPase activity may occur during preparation of membranes or during incubation for assay of ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号