首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Xer site-specific recombination is required for the stable inheritance of multicopy plasmids and the normal segregation of the bacterial chromosome in Escherichia coli.Two related recombinases and two accessory proteins are essential for Xer-mediated recombination at cer, a recombination site in the plasmid ColE1 The accessory proteins, ArgR and PepA, function in ensuring that the Xer recombination reaction acts exclusively intramolecularly, converting plasmid dimers into monomers and not vice versa. PepA is an amino-exopeptidase, but its molecular role in the Xer recombination mechanism is unclear. Here we show that a mutation directed at the presumptive active site of PepA creates a protein with no detectable peptidase activity in vitro or in vivo, but which still functions normality in Xer site-specific recombination at cer.  相似文献   

2.
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located at the junction of the two replication arms. Xer recombination is tightly controlled by the septal protein FtsK. XerCD recombinases and FtsK are found on most sequenced eubacterial genomes, suggesting that the Xer recombination system as described in E. coli is highly conserved among prokaryotes. We show here that Streptococci and Lactococci carry an alternative Xer recombination machinery, organized in a single recombination module. This corresponds to an atypical 31-bp recombination site (difSL) associated with a dedicated tyrosine recombinase (XerS). In contrast to the E. coli Xer system, only a single recombinase is required to recombine difSL, suggesting a different mechanism in the recombination process. Despite this important difference, XerS can only perform efficient recombination when difSL sites are located on chromosome dimers. Moreover, the XerS/difSL recombination requires the streptococcal protein FtsKSL, probably without the need for direct protein-protein interaction, which we demonstrated to be located at the division septum of Lactococcus lactis. Acquisition of the XerS recombination module can be considered as a landmark of the separation of Streptococci/Lactococci from other firmicutes and support the view that Xer recombination is a conserved cellular function in bacteria, but that can be achieved by functional analogs.  相似文献   

3.
FtsK is a multifunctional protein that acts in Escherichia coli cell division and chromosome segregation. Its C-terminal domain is required for XerCD-mediated recombination between dif sites that resolve chromosome dimers formed by recombination between sister chromosomes. We report the construction and analysis of a set of strains carrying different Xer recombination sites in place of dif, some of which recombine in an FtsK-independent manner. The results show that FtsK-independent Xer recombination does not support chromosome dimer resolution. Furthermore, resolution of dimers by the Cre/loxP system also requires FtsK. These findings reveal a second role for FtsK during chromosome dimer resolution in addition to XerCD activation. We propose that FtsK acts to position the dif regions, thus allowing a productive synapse between dif sites.  相似文献   

4.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

5.
The Escherichia coli arginine repressor (ArgR) is an l -arginine-dependent DNA-binding protein that controls expression of the arginine biosynthetic genes and is required as an accessory protein in Xer site-specific recombination at cer and related recombination sites in plasmids. Site-directed mutagenesis was used to isolate two mutants of E. coli ArgR that were defective in arginine binding. Results from in vivo and in vitro experiments demonstrate that these mutants still act as repressors and bind their specific DNA sequences in an arginine-independent manner. Both mutants support Xer site-specific recombination at cer. One of the mutant proteins was purified and shown to bind to its DNA target sequences in vitro with different affinity and as a different molecular species to wild-type ArgR.  相似文献   

6.
Salmonella plasmid pFPTB1 includes a Tn3-like transposon and a Xer recombination site, fpr, which mediates site-specific recombination at efficiencies lower than those required for stabilizing a plasmid by dimer resolution. Mutagenesis and comparative studies with mwr, a site closely related to fpr, indicate that there is an interdependence of the sequences in the XerC binding region and the central region in Xer site-specific recombination sites.Xer site-specific recombination stabilizes many plasmids by resolving dimers created through recombination events (17, 18). Most plasmids'' Xer recombination sites consist of a core recombination site (CRS) that includes two 11-nucleotide binding sites for XerC and XerD, separated by a 6- to 8-nucleotide central region, and a stretch of about 180 bp known as accessory sequences (AS) that bind the architectural proteins PepA and ArgR (Fig. (Fig.1A).1A). These elements form a synaptic complex (11, 14) where XerC is activated by interaction with XerD and catalyzes the exchange of the first pair of strands, which results in the formation of a Holliday junction (3, 6) that, in the case of cer (ColE1) or mwr (pJHCMW1), is resolved by Xer-independent processes (Fig. (Fig.1B)1B) (2).Open in a separate windowFIG. 1.(A) Comparative diagrams of pFPBT1 and pJHCMW1. The black lines represent regions of homology. The Tn3-like transposons in both plasmids are shown at the correct locations but are not to scale. The gray bar between the plasmid maps identifies the replication (REP) regions, which share 97% homology. The numbers indicate the coordinates in the GenBank database (pJHCMW1, accession number AF479774; pFPBT1, accession number AJ634602). The location and a diagram of the Xer site-specific recombination site are shown below the plasmid diagrams. The different regions of the Xer site-specific recombination site, shown with different colors, are not drawn to scale. ARG, ARG box, ArgR binding site. (B) Schematic representation of dimer resolution mediated by the Xer site-specific recombination reaction. For clarity, the proteins are shown only in the synaptic complex (red rectangle, XerD; green rectangle, XerC; brown oval, PepA; yellow oval, ArgR). Blue lines represent AS, and the CRS is the only region shown with a double line (green and red) representing the two DNA strands. The green line represents the DNA strand exchanged by XerC. Only the Xer-independent pathway of resolution of the Holliday junction (demonstrated for cer and mwr) is shown. (C) Comparison of the nucleotide sequences of mwr, fpr, and cer. The ARG box and different regions of the CRS are individually boxed. The ARG box consensus sequence is shown at the top. Nucleotides mutated in different derivatives are indicated by an arrow (central region) or a star (ARG box). Black dots identify the most conserved nucleotides among several sites (8).The pJHCMW1 plasmid, originally isolated from Klebsiella pneumoniae, includes mwr and the Tn3-like transposon Tn1331, which transposes through a replicative pathway (15, 20, 22). The efficiency of Xer-mediated dimer resolution at mwr when Escherichia coli is cultured in L broth is below the levels needed to stabilize the plasmid; instead, stabilization is mediated by the Tn1331 resolvase acting at the res site (13, 21). However, the efficiency of Xer-mediated dimer resolution at mwr is substantially increased when the cells are cultured in low-osmolarity broth (4, 13). The low levels of dimer resolution observed when cells are cultured in L broth seem to be due to a weak interaction of the substandard mwr ARG box with ArgR, hindering proper formation of the synaptic complex. When the cells are cultured in low-osmolarity growth medium, an increase in the density of negative supercoiling results in an increased stability of the synaptic complex and/or efficiency of catalysis by XerC, leading to a significantly higher efficiency of dimer resolution (23). These characteristics make pJHCMW1 a very unusual plasmid that includes a Xer recombination site that, under certain conditions, is unable to confer stability by resolution of dimers; instead, that function is performed by the cointegrate resolution system of Tn1331. In this study, we report that another plasmid, Salmonella Typhimurium plasmid pFPTB1 (12), includes a Xer recombination site with high homology to mwr (Fig. (Fig.1C),1C), from here on called fpr (pFPTB1 Xer recombination site), and a copy of the replicative transposon Tn3-ΔTn1721 (Fig. 1A and C). Plasmid pFPTB1 is the second case reported in which stabilization by dimer resolution is provided by the insertion of a replicative transposon rather than a resident Xer recombination site, suggesting that rather than being exceptional, pJHCMW1 and pFPTB1 may be part of a group of plasmids with these characteristics.The E. coli strains and plasmids used in this study are described in Table Table1.1. Plasmid pFPRTT1 was generated by inserting a synthetic DNA fragment with the fpr site sequence (coordinates 2221 to 2520, accession number AJ634602) from pFPTB1 (12) into the EcoRV site of pUC57 (accession number Y14837). Plasmids pTTT1 through pTTT6 were generated by site-directed mutagenesis using the QuikChange II XL kit (Stratagene). Lennox L broth (containing 2% [wt/vol] agar in the case of solid medium) is called high-osmolarity medium (containing 0.5% NaCl; osmolality, 209 mmol/kg); for low-osmolarity growth medium, NaCl was omitted (osmolality, 87 mmol/kg) (13, 23). In vivo resolution assays were carried out as described by Pham et al. (13). Although pFPTB1 has been isolated from S. Typhimurium, we decided it was appropriate to carry out the in vivo experiments with E. coli because it has been shown before that the Xer recombination proteins of S. Typhimurium can substitute for and are highly homologous to the corresponding proteins of E. coli (7), K. pneumoniae Xer recombination proteins share high homology with those of E. coli and can complement mutants, we have observed no difference in levels of resolution with some sites such as dif and cer and minimal differences with mwr (4), and pJHCMW1-like replicons such as pGY1 (Salmonella) (9), pVI678 (E. coli; accession number NC_008597), and pTKH11 (Klebsiella) (25) are being found in nature across the members of the family Enterobacteriaceae rather than in one specific genus.

TABLE 1.

Strains and plasmids used in this study
Strain or plasmidRelevant characteristic or genotypeRelevant characteristics of Xer recombination sitesReference or origin
E. coli
    DS941AB1157 recF143lacIqlacZΔM15; used as a host in dimer resolution assays19
    DS981DS941 xerC2::aph; used to purify dimers5
    JC8679DS945 recBCsbcA (hyperrecombinogenic); used to generate dimers17
Plasmids
    pESRecombinant plasmid containing the pJHCMW1 mwr siteASmwr, CRSXerCmwr,crmwr13
    pKS492Recombinant plasmid containing the ColE1 cer fragmentAScer, CRScer16
    pFPRTT1Recombinant plasmid containing the pFPBT1 fpr site (nucleotides 2221-2520, accession no. AJ634602)ASfpr, CRSXerCfpr,crfprThis work
    pTTT1Mutant derivative of pFPRTT1 containing fprARGTASfprARGT, CRSXerCfpr,crfprThis work
    pTTT2Mutant derivative of pFPRTT1 containing fprCR6-TASfpr CRSXerCfpr,crCR6-TThis work
    pTTT3Mutant derivative of pFPRTT1 containing fprARGT/CR6-TASfprARGT, CRSXerCfpr,crCR6-TThis work
    pTTT4Mutant derivative of pFPRTT1 containing fprARGT/CRmwrASfprARGT, CRSXerCfpr,crmwrThis work
    pTTT5Mutant derivative of pFPRTT1 containing fprARGT/CR6-T/XerCmwrASfprARGT, CRSXerCmwr,crCR6-TThis work
    pTTT6Mutant derivative of pFPRTT1 containing fprARGT/XerCmwr/CRmwrASfprARGT, CRSXerCmwr,crmwrThis work
    pUC18Plasmid vector; lacks a Xer recombination site; used as a control in stability experimentsAccession no. L09136
    pUC57Plasmid vector that differs from pUC18 in the multiple cloning site; used as a vector to clone fpr24; accession no. Y14837
Open in a separate windowThe backbones of pJHCMW1 and pFPTB1 share homology in regions essential for their stable inheritance and include loci with the characteristics of Xer recombination sites (mwr and fpr, respectively) (Fig. (Fig.1A).1A). Both mwr and fpr include an ARG box that is substandard due to the presence of a C instead of a T nucleotide in one of the highly conserved positions (Fig. (Fig.1C).1C). We have shown before that replacing the C in mwr with a T increased the efficiency of Xer recombination, probably due to better binding of ArgR to the ARG box, facilitating formation of the synaptic complex (Fig. (Fig.1B)1B) (13, 23). The AS and the XerC binding site differ by only seven and two nucleotides, respectively (Fig. (Fig.1C).1C). The central regions not only have different nucleotide sequences but also differ in length. The mwr central region consists of six nucleotides, but the fpr site central region possesses seven nucleotides, a rare feature (2, 8).Figure Figure2A2A shows the plasmid content of E. coli cells transformed with dimers of plasmid pKS492, pES, or pFPRTT1, which includes cer, mwr, or fpr, respectively, after culturing in low- or high-osmolarity growth medium. While the resolution of pFPRTT1 dimers was marginal, ca. 50% and 100% of the pES dimers were resolved at high and low osmolarities, respectively, and 100% of the pKS492 dimers were resolved under both conditions. Stabilization assays (Fig. (Fig.2B)2B) showed that pES and pFPRTT1 were lost at approximately the same rate as plasmid pUC18, which lacks a Xer recombination site, indicating that the levels of recombination at mwr or fpr were not high enough to stabilize the plasmids. Conversely, pKS492 was stably maintained. As expected, the natural pJHCMW1 plasmid was also stably maintained through the action of the Tn1331 resolvase.Open in a separate windowFIG. 2.Dimer resolution and plasmid stability. (A) Dimers of plasmids pKS492 (cer), pES (mwr), and pFPRTT1 (fpr) were introduced by transformation into E. coli DS941. The cells were cultured in low-osmolarity medium (− 0.5% NaCl) or high-osmolarity medium (+ 0.5% NaCl) in the presence of 100 μg of ampicillin per ml for 20 generations. Plasmid DNA was isolated and subjected to agarose gel electrophoresis. The locations of dimers (d) and monomers (m) are indicated at the left. (B) Stability of plasmids harboring different Xer recombination sites. Plasmids were introduced by transformation into hyperrecombinogenic E. coli JC8679, which was cultured under nonselective conditions for the indicated number of generations, and the plasmid content was analyzed. The plasmids tested were pJHCMW1 (empty circles), pKS492 (filled squares), pFPRTT1 (filled triangles), pUC18 (empty squares), and pES (filled circles). (C) Dimers of plasmids pTTT1 (fprARGT), pTTT2 (fprCR6-T), and pTTT3 (fprARGT/CR6-T) were introduced by transformation into E. coli DS941. The cells were cultured in low- or high-osmolarity medium in the presence of 100 μg of ampicillin per ml for 20 generations. Plasmid DNA was isolated and subjected to agarose gel electrophoresis. The locations of dimers and monomers are indicated at the left. (D) Resolution of dimers containing hybrid sites. Hybrid sites contain regions from mwr (cross-hatched) or fpr (gray). The XerD binding sites are identical in both sites (black). The AS are those from fpr but with the T substitution that enhances the ARG box. The gray central region with a white gap represents the fpr modified central region. The results of dimer resolution assays are shown to the right. (E) Quantification of the gels shown in panel C. The bands were quantified using the ImageJ software (http://rsb.info.nih.gov/ij) (1).To identify nucleotides responsible for the difference in recombination efficiency observed between fpr and mwr, three fpr mutant derivatives were generated. (i) fprARGT (plasmid pTTT1) contains a replacement of the C nucleotide in the fpr ARG box with a T (asterisk in Fig. Fig.1C),1C), resulting in a derivative with AS including an ARG box with the appropriate consensus sequence (ASfprARGT) and the wild-type CRS (CRSXerCfpr,crfpr). (ii) fprCR6-T (plasmid pTTT2) contains a deletion of a T (identified by an upward arrowhead in Fig. Fig.1C)1C) in the CRS (CRSXerCfpr, crCR6-T), generating a six-nucleotide central region from here on referred to as the fpr modified central region. (iii) fprARGT/CR6-T (ASfprARGTCRSXerCfpr, crCR6-T, plasmid pTTT3) is a derivative including mutations i and ii described above. Although derivatives fprARGT and fprCR6-T showed a small increase in efficiency of recombination with respect to fpr, the cumulative effect of both substitutions was necessary to reach levels comparable to those observed for mwr (note that dimers harboring mwr or fprARGT/CR6-T were 100% resolved at low osmolarity [Fig. 2A and C]). These results indicate that a more efficient ARG box leads to an increase in the efficiency of Xer site-specific recombination in fpr, as was known to occur with mwr. However, this increase was smaller than that found for the same modification in mwr, in which case the increase was to the levels observed for cer (100% resolution at high and low osmolarities) (13). Although the change in efficiency after modification of a nucleotide in the ARG box could also be due to the fact that the ARG box in the actual host is different from that in E. coli, we think that this is not the case because the ARG box has been found to be highly conserved between genomes (10). The results also show that the fpr seven-nucleotide central region is detrimental for the recombination reaction because reducing the number of nucleotides to six resulted in an increase in the efficiency of dimer resolution (compare Fig. Fig.2A2A fpr to Fig. Fig.2C2C fprCR6-T). However, this enhancing effect on the recombination levels, although measurable, is not as pronounced as in the case of mwr (compare Fig. 2A and C) and is not enough to stabilize the plasmid. These experiments also showed that the recombination efficiency of the fpr derivatives is dependent on the osmolarity of the milieu (Fig. (Fig.2C2C).A series of hybrid sites combining XerC binding sites and central regions was generated to further characterize fpr and mwr. These hybrid sites consisted of ASfprARGT and combinations of the fpr or mwr XerC binding site (XerCfpr or XerCmwr) with the mwr or fpr modified central region (crmwr or crCR6-T). A diagram of the different derivatives and the levels of dimer resolution are shown in Fig. 2D and E, respectively. Replacement of the modified fpr central region with that of mwr generated fprARGT/CRmwr (ASfprARGTCRSXerCfpr, crmwr, plasmid pTTT4). Resolution levels for pTTT4 dimers were similar to those for pTTT3 dimers at 0.5% NaCl but were significantly lower when the cells were cultured in low-osmolarity medium. This result could be interpreted to mean that the fpr modified central region confers slightly higher recombination efficiency on otherwise identical Xer recombination sites. However, comparison of the efficiencies of resolution of dimers of pTTT5 (fprARGT/CR6-T/XerCmwr, ASfprARGT, CRSXerCmwr, crCR6-T) and pTTT6 (fprARGT/CR6-T/XerCmwr/CRmwr, ASfprARGT, CRSXerCmwr, crmwr) showed that in the presence of the mwr XerC binding region, the site including the mwr central region is substantially more efficient as a recombination target than that including the fpr modified central region (Fig. 2D and E). These results indicate that there does not seem to be a best central region; instead, there are more efficient combinations of XerC binding regions and central region sequences.  相似文献   

7.
Xer-mediated site-specific recombination in vitro.   总被引:12,自引:2,他引:10       下载免费PDF全文
The Xer site-specific recombination system acts at ColE1 cer and pSC101 psi sites to ensure that these plasmids are in a monomeric state prior to cell division. We show that four proteins, ArgR, PepA, XerC and XerD are necessary and sufficient for recombination between directly repeated cer sites on a supercoiled plasmid in vitro. Only PepA, XerC and XerD are required for recombination at psi in vitro. Recombination at cer and psi in vitro requires negative supercoiling and is exclusively intramolecular. Strand exchange at cer produces Holliday junction-containing products in which only the top strands have been exchanged. This reaction requires the catalytic tyrosine residue of Xer C but not that of XerD. Recombination at psi gives catenated circular resolution products. Strand exchange at psi is sequential. XerC catalyses the first (top) strand exchange to make a Holiday junction intermediate and XerD catalyses the second (bottom) strand exchange.  相似文献   

8.
Chromosome dimers, which form during the bacterial life cycle, represent a problem that must be solved by the bacterial cell machinery so that chromosome segregation can occur effectively. The Xer/dif site-specific recombination system, utilized by most bacteria, resolves chromosome dimers into monomers using two tyrosine recombinases, XerC and XerD, to perform the recombination reaction at the dif site which consists of 28–30 bp. However, single Xer recombinase systems have been recently discovered in several bacterial species. In Streptococci and Lactococci a single recombinase, XerS, is capable of completing the monomerisation reaction by acting at an atypical dif site called dif SL (31 bp). It was recently shown that a subgroup of ε-proteobacteria including Campylobacter spp. and Helicobacter spp. had a phylogenetically distinct Xer/dif recombination system with only one recombinase (XerH) and an atypical dif motif (difH). In order to biochemically characterize this system in greater detail, Campylobacter jejuni XerH was purified and its DNA-binding activity was characterized. The protein showed specific binding to the complete difH site and to both halves separately. It was also shown to form covalent complexes with difH suicide substrates. In addition, XerH was able to catalyse recombination between two difH sites located on a plasmid in Escherichia coli in vivo. This indicates that this XerH protein performs a similar function as the related XerS protein, but shows significantly different binding characteristics.  相似文献   

9.
Polyphosphate kinase is a component of the Escherichia coli RNA degradosome   总被引:8,自引:6,他引:2  
Xer site-specific recombination functions in the stable inheritance of circular plasmids and bacterial chromosomes. Two related recombinases, XerC and XerD, mediate this recombination, which 'undoes' the potential damage of homologous recombination. Xer recombination on natural plasmid sites is preferentially intramolecular, converting plasmid multimers to monomers. In contrast, recombination at the Escherichia coli recombination site, dif , occurs both intermolecularly and intramolecularly, at least when dif is inserted into a multicopy plasmid. Here the DNA sequence features of a family of core recombination sites in which the XerC- and XerD-binding sites, which are separated by 6 bp, were analysed in order to ascertain what determines whether recombination will be preferentially intramolecular, or will occur both within and between molecules. Sequence changes in either the XerC- or XerD-binding site can alter the recombination outcome. Preferential intramolecular recombination between a pair of recombination sites requires additional accessory DNA sequences and accessory recombination proteins and is correlated with reduced affinities of recombinase binding to recombination core sites, reduced XerC-mediated cleavage in vitro , and an apparent increased overall bending in recombinase–core-site complexes.  相似文献   

10.
We have studied the recombination of plasmids bearing bom and cer sites. The bom (basis of mobilization) site is required for conjugative transfer, while the cer (ColE1 resolution) site is involved in the resolution of plasmid multimers, which increases plasmid stability. We constructed a pair of parent plasmids in such a way as to allow us select clones containing recombinant plasmids directly. Clone selection was based on the McrA sensitivity of recipient host DNA modified by M. Ecl18kI, which is encoded by one of the parent plasmids. The recombinant plasmid contains segments originating from both parental DNAs, which are bounded by bom and cer sites. Its structure is in accordance with our previously proposed model for recombination mediated by bom and cer sequences. The frequency of recombinant plasmid formation coincided with the frequency of recombination at the bom site. We also show that bom-mediated recombination in trans, unlike in cis, is independent of other genetic determinants on the conjugative plasmids.Communicated by W. Goebel  相似文献   

11.
Xer site-specific recombination at the psi site from plasmid pSC101 displays topological selectivity, such that recombination normally occurs only between directly repeated sites on the same circular DNA molecule. This intramolecular selectivity is important for the biological role of psi, and is imposed by accessory proteins PepA and ArcA acting at accessory DNA sequences adjacent to the core recombination site. Here we show that the selectivity for intramolecular recombination at psi can be bypassed in multiply interlinked catenanes. Xer site-specific recombination occurred relatively efficiently between antiparallel psi sites located on separate rings of right-handed torus catenanes containing six or more nodes. This recombination introduced one additional node into the catenanes. Antiparallel sites on four-noded right-handed catenanes, the normal product of Xer recombination at psi, were not recombined efficiently. Furthermore, parallel psi sites on right-handed torus catenanes were not substrates for Xer recombination. These findings support a model in which psi sites are plectonemically interwrapped, trapping a precise number of supercoils that are converted to four catenation nodes by Xer strand exchange.  相似文献   

12.
Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.  相似文献   

13.
XerCD-dif site-specific recombination is a well characterized system, found in most bacteria and archaea. Its role is resolution of chromosomal dimers that arise from homologous recombination. Xer-mediated recombination is also used by several plasmids for multimer resolution to enhance stability and by some phage for integration into the chromosome. In the past decade, it has been hypothesized that an alternate and novel function exists for this system in the dissemination of genetic elements, notably antibiotic resistance genes, in Acinetobacter species. Currently the mechanism underlying this apparent genetic mobility is unknown. Multidrug resistant Acinetobacter baumannii is an increasingly problematic pathogen that can cause recurring infections. Sequencing of numerous plasmids from clinical isolates of A. baumannii revealed the presence of possible mobile modules: genes were found flanked by pairs of Xer recombination sites, called plasmid-dif (pdif) sites. These modules have been identified in multiple otherwise unrelated plasmids and in different genetic contexts suggesting they are mobile elements. In most cases, the pairs of sites flanking a gene (or genes) are in inverted repeat, but there can be multiple modules per plasmid providing pairs of recombination sites that can be used for inversion or fusion/deletion reactions; as many as 16 pdif sites have been seen in a single plasmid. Similar modules including genes for surviving environmental toxins have also been found in strains of Acinetobacter Iwoffi isolated from permafrost cores; this suggests that these mobile modules are an ancient adaptation and not a novel response to antibiotic pressure. These modules bear all the hallmarks of mobile genetic elements, yet, their movement has never been directly observed to date. This review gives an overview of the current state of this novel research field.  相似文献   

14.
15.
Xer-mediated dimer resolution at the mwr site of plasmid pJHCMW1 is osmoregulated in Escherichia coli. Whereas under low-salt conditions, the site-specific recombination reaction is efficient, under high-salt conditions, it proceeds inefficiently. Regulation of dimer resolution is independent of H-NS and is mediated by changes in osmolarity rather than ionic effects. The low level of recombination at high salt concentrations can be overcome by high levels of PepA or by mutating the ARG box to a sequence closer to the E. coli ARG box consensus. The central region of the mwr core recombination site plays a role in regulation of site-specific recombination by the osmotic pressure of the medium.  相似文献   

16.
The site-specific recombination system used by multicopy plasmids of the ColE1 family uses two identical plasmid-encoded recombination sites and four bacterial proteins to catalyze the recombination reaction. In the case of the Escherichia coli plasmid ColE1, the recombination site, cer, is a 280 by DNA sequence which is acted on by the products of the argR, pepA, xerC and xerD genes. We have constructed a model system to study this recombination system, using tandemly repeated recombination sites from the plasmids ColE1 and NTP16. These plasmids have allowed us precisely to define the region of strand exchange during site-specific recombination, and to derive a model for cer intramolecular site-specific recombination.  相似文献   

17.
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/difSL system, include only one recombinase. We investigated the functional effects of this difference by studying the XerS/difSL system. XerS bound and recombined difSL sites in vitro, both activities displaying asymmetric characteristics. Resolution of chromosome dimers by XerS/difSL required translocation by division septum-borne FtsK. The translocase domain of L. lactis FtsK supported recombination by XerCD/dif, just as E. coli FtsK supports recombination by XerS/difSL. Thus, the FtsK-dependent coupling of chromosome segregation with cell division extends to non-rod-shaped bacteria and outside the phylum Proteobacteria. Both the XerCD/dif and XerS/difSL recombination systems require the control activities of the FtsKγ subdomain. However, FtsKγ activates recombination through different mechanisms in these two Xer systems. We show that FtsKγ alone activates XerCD/dif recombination. In contrast, both FtsKγ and the translocation motor are required to activate XerS/difSL recombination. These findings have implications for the mechanisms by which FtsK activates recombination.  相似文献   

18.
19.
20.
A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis. Following integration of the insertion cassette into the chromosomal target locus by homologous recombination, these recombinases act to resolve the two directly repeated dif sites to a single site, thus excising the antibiotic resistance gene. Previous approaches have required the inclusion of exogenous site-specific recombinases or transposases in trans; our strategy demonstrates that this is unnecessary, since an effective recombination system is already present in bacteria. The high recombination frequency makes the inclusion of a counter-selectable marker gene unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号