首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel phase-sensitive surface plasmon resonance (SPR) setup, based on temporal modulation of a pumping beam by a photoelastic modulator, and subsequent extraction of phase information at the second and the third harmonics of the modulation frequency, has been developed to study biomolecular interactions on SPR-supporting gold. We demonstrated that the design setup provides ultra-high phase sensitivity, together with a wide dynamic range of measurements. In particular, the proposed scheme was used to study real-time interaction of biotin-protein and streptavidin-BSA complexes. We have found that the proposed technique has a detection limit as high as 2.89 x 10(-7) in terms of refractive index units (RIU). In terms of biosensing performance, a detection sensitivity of 1.3 nM from the streptavidin-maleimide/thiolated BSA complex binding reaction has also been demonstrated.  相似文献   

2.
This study develops a coupled waveguide-surface plasmon resonance (CWSPR) biosensor with a subwavelength grating structure for the real-time analysis of biomolecular interactions. In the proposed optical metrology system, normally incident white light is coupled into the waveguide layer through the subwavelength grating structure thereby enhancing the wave vector which excites the surface plasmons on the metal sensing surface. The proposed CWSPR biosensor not only retains the same sensing sensitivity as that of a conventional surface plasmon resonance device, but also yields a sharper dip in the reflectivity spectrum and therefore provides an improved measurement precision. Moreover, the metrology setup overcomes the limitations of the conventional Kretschmann attenuated total reflection approach and is less sensitive to slight variations in the angle of the incident light. The experimental results confirm that the current CWSPR biosensor provides a straightforward yet powerful technique for real-time biomolecular interaction analysis.  相似文献   

3.
4.
PurposeIn this paper, we propose a novel method for human body composition measurement, especially for the bone mineral density (BMD) measurement. The proposed method, using the absorption and differential phase information retrieved from X-ray grating-based interferometer (XGBI) to measure the BMD, has potential to replace dual-energy X-ray absorptiometry (DEXA), which is currently widely used for body composition measurement.MethodsThe DEXA method employs two absorption images acquired at two different X-ray spectra (high energy and low energy) to calculate the human body composition. In this paper, a new method to calculate BMD using a single X-ray measurement is proposed. XGBI is a relatively new X-ray technique that provides absorption, phase and scattering information simultaneously using a single X-ray spectrum. With the absorption and differential phase information retrieved from XGBI, BMD can be measured using only one single X-ray spectrum. Numerical simulations are performed with a body phantom of bone (Cortical, ICRU-44) surrounded by soft tissue (Soft, ICRU-44). BMD is calculated with both the DEXA method and the proposed method.ResultsResults show that BMD can be measured accurately with the proposed method; moreover, better signal-to-noise ratio (SNR) is obtained compared to DEXA.ConclusionWith the proposed method, BMD can be measured with XGBI setup. Further, the proposed method can be realized using current X-ray phase-contrast imaging (XPCI) apparatus without any hardware modification, suggesting that this technique can be a promising supplementary function to current XPCI equipment.  相似文献   

5.
A novel and simple method for the measurement of cloud point temperatures of solutions is presented. Cloud point determination, which is currently used to establish the phase diagrams of protein solutions, is indicative of proteins interactions and constitutes a useful tool for food products engineering. We describe a novel experimental setup that allows screening of a large number of physical-chemical conditions in one measurement and the determination of cloud point temperatures both above and below ambient temperature. We use a simple method to avoid solvent evaporation and condensation, so that the set-up can be used for solutions prepared with a volatile solvent. We present the operating parameter range and the precision of the measurement. The optical properties of the system are calibrated with solutions of known transmittance, and the determination of cloud point temperatures is validated on a standard non-ionic surfactant solution. Finally, we demonstrate the efficiency of the method by determining the phase diagram of a wheat protein extract, soluble in a water/ethanol mixture. Complemented with differential scanning calorimetry measurements, the liquid-liquid phase transition can be determined up to a protein concentration of 250 g/L, a range inaccessible with conventional methods for this protein extract.  相似文献   

6.
Photon-counting sensors based on standard complementary metal-oxide-semiconductor single-photon avalanche diodes (SPADs) represent an emerging class of imagers that enable the counting and/or timing of single photons at zero readout noise (better than high-speed electron-multiplying charge-coupling devices) and over large arrays. They have seen substantial progress over the last 15 years, increasing their spatial resolution, timing accuracy, and sensitivity while reducing spurious signals such as afterpulsing and dark counts. They are increasingly being applied for time-resolved applications with the added advantage of enabling real-time options such as autocorrelation. We report in this study on the use of such a state-of-the-art 512 × 128 SPAD array, capable of a time resolution of 10?5–10?6 s for full frames while retaining acceptable photosensitivity thanks to the use of dedicated microlenses, in a selective plane illumination-fluorescence correlation spectroscopy setup. The latter allows us to perform thousands of fluorescence-correlation spectroscopy measurements simultaneously in a two-dimensional slice of the sample. This high-speed SPAD imager enables the measurement of molecular motion of small fluorescent particles such as single chemical dye molecules. Inhomogeneities in the molecular detection efficiency were compensated for by means of a global fit of the auto- and cross-correlation curves, which also made a calibration-free measurement of various samples possible. The afterpulsing effect could also be mitigated, making the measurement of the diffusion of Alexa-488 possible, and the overall result quality was further improved by spatial binning. The particle concentrations in the focus tend to be overestimated by a factor of 1.7 compared to a confocal setup; a calibration is thus required if absolute concentrations need to be measured. The first high-speed selective plane illumination-fluorescence correlation spectroscopy in vivo measurements to our knowledge were also recorded: although two-component fit models could not be employed because of noise, the diffusion of eGFP oligomers in HeLa cells could be measured. Sensitivity and noise will be further improved in the next generation of SPAD-based widefield sensors, which are currently under testing.  相似文献   

7.
Real competitive PCR (rcPCR) has been shown to have high sensitivity, reproducibility, and high-throughput potential. We describe further development and evaluation of this methodology as a tool for measuring nucleic acid abundance within a cell. Modifications to the original protocol allow analysis of gene expression levels using standard conditions regardless of mRNA abundance and assay type, thereby increasing throughput and ease of reaction setup while decreasing optimization time. In addition, we have developed a software package, TITAN, to automatically analyze the results. The details are relevant to researchers performing competitive PCR using any detection technique. The effectiveness of the described developments is demonstrated using 12 genes known to have differential expression in cell lines grown under normal and hypoxic conditions. Quantitative and qualitative comparisons to real-time PCR are presented. It is also demonstrated that the technique is capable of detecting submicroscopic chromosomal DNA deletions.  相似文献   

8.
Focused microarray analysis   总被引:9,自引:0,他引:9  
  相似文献   

9.
Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid–structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.  相似文献   

10.
We report noncontact optical measurement of fast transient structural changes in the crustacean nerve during action potential propagation without the need for exogenous chemicals or reflection coatings. The technique, spectral domain optical coherence tomography, provides real-time cross-sectional images of the nerve with micron-scale resolution to select a specific region for functional assessment and interferometric phase sensitivity for subnanometer-scale motion detection. Noncontact optical measurements demonstrate nanometer-scale transient movement on a 1-ms timescale associated with action potential propagation in crayfish and lobster nerves.  相似文献   

11.
Quality by design (QbD) is a current structured approach to design processes yielding a quality product. Knowledge and process understanding cannot be achieved without proper experimental data; hence requirements for measurement error and frequency of measurement of bioprocess variables have to be defined. In this contribution, a model-based approach is used to investigate impact factors on calculated rates to predict the obtainable information from real-time measurements (= signal quality). Measurement error, biological activity, and averaging window (= period of observation) were identified as biggest impact factors on signal quality. Moreover, signal quality has been set in context with a quantifiable measure using statistical error testing, which can be used as a benchmark for process analytics and exploitation of data. Results have been validated with data from an E. coli batch process. This approach is useful to get an idea which process dynamics can be observed with a given bioprocess setup and sampling strategy beforehand.  相似文献   

12.
A new and extremely sensitive method for measuring nitrogenase activity through acetylene reduction is presented. Ethylene produced by nitrogenase-mediated reduction of acetylene is detected by using laser photoacoustics (LPA). This method possesses a detection limit making it 3 orders of magnitude more sensitive than traditional gas chromatographic analysis. Photoacoustic detection is based on the strong and unique absorption pattern of ethylene in the CO(inf2) laser wavelength region (9 to 11 (mu)m). The high sensitivity allowed on-line monitoring of nitrogenase activity in a culture of the heterocystous cyanobacterium Nodularia spumigena, which was isolated from a water bloom in the Baltic Sea. This setup makes it unnecessary to take subsamples from the culture and avoids long incubations in sealed vials. The fast response of the LPA technique allows measurement of real-time dynamic changes of nitrogenase activity. The method was used to analyze in vivo saturation of nitrogenase by acetylene in N. spumigena. It is demonstrated that 20% acetylene does not saturate nitrogenase and that the degree of saturation depends on light intensity. With concentrations of acetylene as low as 2.5% it is possible to assess the degree of saturation and to extrapolate to total nitrogenase activity. In N. spumigena nitrogenase activity becomes independent of light intensity above 20 to 80 (mu)mol of photons m(sup-2) s(sup-1) at 20% O(inf2).  相似文献   

13.
We attempted to analyze any influences to %T>MIC achievement probability due to the difference of the MIC measurement concentration range of MEPM for 613 strains of Pseudomonas aeruginosa by the Monte Carlo simulation method. As for the analysis, we calculated the achievement probability of 30% and 50% for MEPM %T>MIC by the administration volume of MEPM: 250 mg, 500 mg, and 1,000 mg, the administration time: 0.5 h, and 3 h, the administration frequency: 2 times, and 3 times, and the renal excretion capability: Normal, Slight, Moderate, and High abnormal with the 3 types of MIC concentration measurement level 1) <=0.06~>=256 μg/ml: 13 levels, 2) <=0.5~>=32 μg/ml: 7 levels, and 3) <=1~>=16 μg/ml: 5 levels. As the result, we found the following findings; 1. In terms of the administration of normal renal excretion capability, 250 mg, in comparison with 500 mg and 1,000 mg, indicated the differential due to the difference of MIC measurement concentration range. 2. The administration volume of MEPM 500 mg which has been recommended shown the less differential of the achievement probability due to the difference of MIC measurement concentration range. As the renal excretion was shifted through Normal to Slight to Moderate to High abnormal, the differential of the achievement probability due to the difference of MIC measurement concentration range was gradually decreased. With these results, PK/PD analysis is possible for the 5 levels measurement concentration. It is significant that the facility using the automated microbiology analyzer can provide not only the MIC report, but also the information on the appropriate administration method for antibacterial drug by PK/PD analysis.  相似文献   

14.
Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents.  相似文献   

15.
Analysis of DNA oxidative damage related to cell proliferation   总被引:5,自引:0,他引:5  
In vivo and in vitro cell populations exhibit a different sensitivity and a heterogeneous response to many genotoxic agents. Several studies have been carried out to evaluate the possibility that the different sensitivity of the cells is related to their proliferative status. In this study, the sensitivity of proliferating (P) and quiescent (Q) C3H10T1/2 cells to oxidative damage and their repair capability has been investigated by single cell gel electrophoresis (SCGE) and micronucleus test. Furthermore the possibility to simultaneously detect DNA damage and cell cycle position has been evaluated. Our results showed a dose-related increase of DNA damage in exponential and plateau phase cells treated with hydrogen peroxide (doses ranging between 2.5 and 100 microM). DNA damage was almost completely repaired within 2 h after treatment in both culture conditions. The percentage of cells in the various phases of the cell cycle has been determined by comet assay and by flow cytometry, and a good agreement between the results of the two techniques was found. Untreated exponentially growing cells in G1 phase showed a lower tail moment than S and G2/M cells. The same cell cycle dependence was evidenced in cells treated with low doses of H(2)O(2), while, at the higher doses, all cells showed a similar level of damage. These results confirm the sensitivity of the Comet Assay in assessing DNA damage, and support its usefulness in evaluating cell cycle-related differential sensitivity to genotoxic agents.  相似文献   

16.
Tensiomyography is a non-invasive method to assess skeletal muscle contractile properties from the stimulated radial displacement. Many studies have used the rate of displacement (Vc) as an indirect measure of muscle contraction velocity. However, no standardised methodical approach exists to measure displacement and determine Vc. This review aimed to provide an overview of concepts to determine Vc and measurement protocols to foster the development of a standardised methodical approach. This review followed the Preferred Reporting Items for Systematic Reviews and meta-Analyses extension for Scoping Reviews (PRISMA–ScR) guideline. Systematic searches were performed within five electronic databases and additional sources. The included 62 studies reported 10 different concepts to determine Vc, which we summarised in three groups. The determination concepts differed mainly regarding time intervals during the contraction phase considered and criteria used to define these intervals. Essential information on the equipment and raters, measurement setup, electrical stimulation procedure, and data analysis were frequently not reported. In conclusion, no consensus on how to determine Vc existed. Incomplete reporting of measurement protocols hindered study comparison, which obstructs developing a standardised approach. Therefore, we propose a new guideline for reporting measurement protocols, which covers the 1) equipment and rater, 2) measurement setup, including positioning of the subject, sensor and electrodes, 3) electrical stimulation, including initial stimulation amplitude, increment, and endpoint, and 4) data analysis, including selection criteria and number of analysed signals and a definition of derived parameters.  相似文献   

17.
18.
19.
The leukocyte differential counting capability of the Coulter Counter model S-PLUS IV was evaluated for precision, accuracy, and clinical sensitivity. The evaluation used procedures described in the NCCLS tentative standard (H20-T) when these were appropriate for this technology. Within its inherent constraints, the system was found to be more reproducible than the stained-film reference method and at least as accurate. Clinical sensitivity was equivalent to that of a four-slide, microscope differential count. Reference ranges for the cell classes identified by the instrument were similar to those given by the stained-film method.  相似文献   

20.
A recurrent neural network modeling approach for software reliability prediction with respect to cumulative failure time is proposed. Our proposed network structure has the capability of learning and recognizing the inherent internal temporal property of cumulative failure time sequence. Further, by adding a penalty term of sum of network connection weights, Bayesian regularization is applied to our network training scheme to improve the generalization capability and lower the susceptibility of overfitting. The performance of our proposed approach has been tested using four real-time control and flight dynamic application data sets. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to both goodness-of-fit and next-step-predictability compared to existing neural network models for failure time prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号