首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P < 0.001, and 307 +/- 65 vs. 524 +/- 71 micromol/l, P < 0.05, respectively) and glutamine uptake was increased (5.2 +/- 0.5 vs. 7.4 +/- 0.7 micromol x kg(-1) x min(-1), P < 0.05 and 5.2 +/- 1.1 vs. 7.6 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05). Glutamine production and metabolic clearance rates were not altered by the three treatments. These results suggest that there is an increased requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.  相似文献   

2.
Fasting-related states of distress pose major health problems, and growth hormone (GH) plays a key role in this context. The present study was designed to assess the effects of GH on substrate metabolism and insulin sensitivity during short-term fasting. Six GH-deficient adults underwent 42.5 h of fasting on two occasions, with and without concomitant GH replacement. Palmitate and urea fluxes were measured with the steady-state isotope dilution technique after infusion of [9,10-3H]palmitate and [13C]urea. During fasting with GH replacement, palmitate concentrations and fluxes increased by 50% [palmitate: 378 +/- 42 (GH) vs. 244 +/- 12 micromol/l, P < 0.05; palmitate: 412 +/- 58 (GH) vs. 276 +/- 42 microM, P = 0.05], and urea turnover and excretion decreased by 30-35% [urea rate of appearance: 336 +/- 22 (GH) vs. 439 +/- 43 micromol. kg-1. h-1, P < 0.01; urea excretion: 445 +/- 43 (GH) vs. 602 +/- 74 mmol/24 h, P < 0.05]. Insulin sensitivity (determined by a euglycemic hyperinsulinemic clamp) was significantly decreased [M value: 1.26 +/- 0.06 (GH) vs. 2.07 +/- 0.22 mg. kg-1. min-1, P < 0.01] during fasting with GH replacement. In conclusion, continued GH replacement during fasting in GH-deficient adults decreases insulin sensitivity, increases lipid utilization, and conserves protein.  相似文献   

3.
We investigated the impact of growth hormone (GH) alone, testosterone (T) alone, and combined GH and T on whole body protein metabolism. Twelve hypopituitary men participated in two studies. Study 1 compared the effects of GH alone with GH plus T, and study 2 compared the effects of T alone with GH plus T. IGF-I, resting energy expenditure (REE), and fat oxidation (F(ox)) and rates of whole body leucine appearance (R(a)), oxidation (L(ox)), and nonoxidative leucine disposal (NOLD) were measured. In study 1, GH treatment increased mean plasma IGF-I (P < 0.001). GH did not change leucine R(a) but reduced L(ox) (P < 0.02) and increased NOLD (P < 0.02). Addition of T resulted in an additional increase in IGF-I (P < 0.05), reduction in Lox (P < 0.002), and increase in NOLD (P < 0.002). In study 2, T alone did not alter IGF-I levels. T alone did not change leucine R(a) but reduced L(ox) (P < 0.01) and increased NOLD (P < 0.01). Addition of GH further reduced L(ox) (P < 0.05) and increased NOLD (P < 0.05). In both studies, combined treatments on REE and F(ox) were greater than either alone. In summary, GH-induced increase of circulating IGF-I is augmented by T, which does not increase IGF-I in the absence of GH. T and GH exerted independent and additive effects on protein metabolism, F(ox) and REE. The anabolic effects of T are independent of circulating IGF-I.  相似文献   

4.
The objectives of this study were to determine whether the addition of growth hormone (GH) to maturation medium and GH or insulin-like growth factor-I (IGF-I) to culture medium affects development of cultured bovine embryos. We matured groups of 10 cumulus-oocyte complexes (COCs) in serum-free TCM-199 medium containing FSH and estradiol with or without 100 ng/ml GH. After fertilization, we transferred groups of 10 putative zygotes to 25 microl drops of a modified KSOM medium containing the following treatments: non-specific IgG (a control antibody, 10 microg/ml); GH (100 ng/ml) + IgG (10 microg/ml, GH/IgG); IGF-I (100 ng/ml) + IgG (10 microg/ml, IGF/IgG); antibody to IGF-I (10 microg/ml, anti-IGF); GH (100 ng/ml) + anti-IGF (10 microg/ml GH/anti-IGF); IGF-I (100 ng/ml) + anti-IGF (10 microg/ml, IGF/anti-IGF); no further additions (control). We repeated the experiment six times. Adding GH to the maturation medium increased cleavage rates at Day 3 compared to control (87.3 +/- 1.2% > 83.9 +/- 1.2%; P < 0.05) but had no effects on blastocyst development at Day 8. At Day 8, blastocyst development was greater (P < 0.01) for GH/IgG (24.8 +/- 2.5%) and IGF/IgG (33.7 +/- 2.5%) than for IgG (16.1 +/- 2.1%) and greater for IGF/IgG than for GH/IgG (P < 0.02). Blastocyst development at Day 8 did not differ between anti-IGF (20.4 +/- 1.8%) and GH/anti-IGF (24.1 +/- 1.9%) or IGF/anti-IGF (17.7 +/- 1.9%), but it was greater for GH/anti-IGF than for IGF/anti-IGF (P < 0.05). The Day 8 blastocysts of GH/IgG and IGF-I/IgG groups had a higher (P < 0.01) number of cells than the IgG group. The addition of anti-IGF-I eliminated the effects of IGF-I on cell number but did not alter GH effects. In conclusion, both GH and IGF-I stimulate embryonic development in cattle and GH effects may likely involve IGF-I-independent mechanisms.  相似文献   

5.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

6.
Anabolic effects of exercise are mediated, in part, by fibroblast growth factor-2 (FGF-2), insulin-like growth factor-I (IGF-I), and growth hormone (GH). To identify local vs. systemic modification of these mediators, 10 male subjects performed 10 min of unilateral wrist-flexion exercise. Blood was sampled from catheters placed in basilic veins of both arms. Lactate was significantly increased only in the exercising arm. FGF-2 decreased dramatically (P < 0.01) in both the resting (from 1.49 +/- 0.32 to nadir at 0.11 +/- 0.11 pg/ml) and exercising arm (1.80 +/- 0.60 to 0.29 +/- 0.14 pg/ml). Small but significant increases were found in both the resting and exercising arm for IGF-I and IGF binding protein-3 (IGFBP-3). GH was elevated in blood sampled from both the resting (from 1.04 +/- 0.68 to a peak of 2.57 +/- 0.53 ng/ml) and exercising arm (1.04 +/- 0.66 to 2.43 +/- 0.42 ng/ml, P < 0.05). Unilateral wrist exercise was not sufficiently intense to increase circulating lactate or heart rate, but it led to systemic changes in GH, IGF-I, IGFBP-3, and FGF-2. Low-intensity exercise involving small muscle groups can influence the circulating levels of growth factors.  相似文献   

7.
During chronic total parenteral nutrition (TPN), net hepatic glucose uptake (NHGU) is markedly elevated. However, NHGU is reduced by the presence of an infection. We recently demonstrated that a small, acute (3-h) intraportal fructose infusion can correct the infection-induced impairment in NHGU. The aim of this study was to determine whether the addition of fructose to the TPN persistently enhances NHGU in the presence of an infection. TPN was infused continuously into the inferior vena cava of chronically catheterized dogs for 5 days. On day 3, a bacterial clot was implanted in the peritoneal cavity, and either saline (CON, n = 5) or fructose (+FRUC, 1.0 mg. kg(-1). min(-1), n = 6) infusion was included with the TPN. Forty-two hours after the infection was induced, hepatic glucose metabolism was assessed in conscious dogs with arteriovenous and tracer methods. Arterial plasma glucose concentration was lower with chronic fructose infusion (120 +/- 4 vs. 131 +/- 3 mg/dl, +FRUC vs. CON, P < 0.05); however, NHGU was not enhanced (2.2 +/- 0.5 vs. 2.8 +/- 0.4 mg. kg(-1). min(-1)). Acute removal of the fructose infusion dramatically decreased NHGU (2.2 +/- 0.5 to -0.2 +/- 0.5 mg. kg(-1). min(-1)), and net hepatic lactate release also fell (1.6 +/- 0.3 to 0.5 +/- 0.3 mg. kg(-1). min(-1)). This led to an increase in the arterial plasma glucose (Delta13 +/- 3 mg/dl, P < 0.05) and insulin (Delta5 +/- 2 micro U/ml) concentrations and to a decrease in glucagon (Delta-11 +/- 3 pg/ml) concentration. In conclusion, the addition of chronic fructose infusion to TPN during infection does not lead to a persistent augmentation of NHGU.  相似文献   

8.
Ischemia-induced angiogenic response is reduced in spontaneously hypertensive rats (SHR). To study whether exogenous basic fibroblast growth factor (bFGF) infusion is effective in expanding collateral circulation in frankly hypertensive SHR, femoral arteries of male SHR (weighing approximately 250 g) were kept intact (nonoccluded control; n = 9) or occluded for 4h(n = 12) or for 16 days with vehicle (n = 14) or bFGF [0.5 (n = 17), 5.0 (n = 13), and 50.0 (n = 14) microg. kg-1. day-1 for 14 days] intraarterially. Maximal collateral-dependent blood flows (BF) to the hindlimbs were determined with 85Sr- and 141Ce-labeled microspheres during running at 20 and 25 m/min (15% grade). Preexercise heart rates (approximately 530 beats/min) and blood pressures (BP; approximately 200 mmHg) were similar across groups except in the high-dose bFGF group, where BP was reduced by approximately 12% (P < 0.05). Femoral artery occlusion for 4 h resulted in approximately 95% reduction of BF in calf muscles [199 +/- 18.7 (nonoccluded group) to 10 +/- 1.0 ml. min-1. 100 g-1; P < 0.001]. BF to calf muscles of the vehicle and low-dose bFGF (0.5 microg. kg-1. day-1) groups increased to 36 +/- 3.2 and 45 +/- 2.0 ml. min-1. 100 g-1, respectively (P < 0.001). bFGF infusion at 5.0 and 50.0 microg. kg-1. day-1 further increased (P < 0.001) BF to calf muscles (62 +/- 4.6 and 62 +/- 2.2 ml. min-1. 100 g-1, respectively). Our results show that bFGF can effectively increase BF in hypertensive rats. The reduced hypertension with high-dose bFGF suggests that a critical signal in arteriogenesis (nitric oxide bioavailability) may be restored. These findings suggest that the dulled endothelial nitric oxide synthase of SHR does not preempt collateral vessel remodeling.  相似文献   

9.
Ghrelin stimulates growth hormone (GH) secretion, but it is unknown whether there is a feedback of GH on ghrelin secretion. In this study, we characterized the relatedness of GH and ghrelin in a model of acute caloric deprivation in 10 healthy women (age 26.7 +/- 1.6 yr) during a 4-day fast in the early follicular phase. GH, ghrelin, and cortisol were assessed every hour over 24 h during an isocaloric diet and after a 4-day complete fast. Sampling during a normal diet at baseline demonstrated that ghrelin decreased 17.9% within 1 h after meals (P < 0.0001), but there was no meal effect on GH. BMI (22.3 +/- 0.4 vs. 21.5 +/- 0.4 kg/m2, P < 0.0001) and IGF-I (312 +/- 28 vs.124 +/- 22 ng/ml, P < 0.0001) decreased during fasting. Mean 24-h GH increased (2.6 +/- 0.5 vs. 5.6 +/- 0.5 ng/ml, P < 0.001), but ghrelin decreased (441.3 +/- 59.7 vs. 359.8 +/- 54.2 pg/ml, P = 0.012). The peak ghrelin level decreased from 483.5 to 375.6 pg/ml (P < 0.0001), and the time of the peak ghrelin changed from 0415 to 1715. In contrast, the diurnal pattern of GH was maintained, with increases in the nadir (1.1 to 3.4 ng/ml) and peak GH concentrations (4.1 to 7.9 ng/ml) from the fed to fasted state (P < 0.0001). The change in morning GH concentrations was inversely related to the change in ghrelin (r = -0.79, P = 0.012). During complete short-term caloric deprivation in healthy women, ghrelin decreases, even as GH rises, and these processes appear to be reciprocal, suggesting that GH exhibits feedback inhibition on ghrelin. Our data provide new evidence of the physiological relationship of GH and ghrelin in response to changes in protein-energy metabolism.  相似文献   

10.
Statin therapy restores sympathovagal balance in experimental heart failure.   总被引:17,自引:0,他引:17  
Inhibitors of hydroxymethylglutaryl-CoA reductase or statins have been shown to alleviate endothelial dysfunction. Their effects on constitutive nitric oxide synthase in the central nervous system may hypothetically affect the autonomic balance in sympathoexcitatory states, such as chronic heart failure (CHF). To address this issue, simvastatin (SIM) (0.3, 1.5, or 3 mg. kg-1. day-1 po) was given to rabbits with pacing-induced CHF over a 3-wk period. Normal and CHF vehicle-treated rabbits served as controls. Autonomic balance was assessed by measuring heart rate variability, including power spectral analysis (PSA). In addition, changes in resting heart rate were assessed before and after vagal and sympathetic autonomic blockade by atropine and metoprolol, respectively. The SD for all intervals was 8.9 +/- 0.7 ms in normal, 4.9 +/- 0.6 ms in CHF (P < 0.01), 3.8 +/- 0.6 ms in CHF with 0.3 mg. kg-1. day-1 SIM (P < 0.001), 5.7 +/- 0.9 in CHF with 1.5 mg. kg-1. day-1 SIM (P < 0.05), and 7.2 +/- 0.5 in CHF with 3.0 mg. kg-1. day-1 SIM. Similarly, total power was 40.5 +/- 6.3 ms2 in normal, 10.1 +/- 3.0 ms2 in CHF (P < 0.01), 6.0 +/- 1.6 ms2 in CHF with 0.3 mg. kg-1. day-1 SIM (P < 0.01), 13.2 +/- 3.9 ms2 in CHF with 1.5 mg. kg-1. day-1 SIM (P < 0.05), and 22.0 +/- 3.0 ms2 in CHF with 3.0 mg. kg-1. day-1 SIM. Both PSA data for low (0.625-0.1875 Hz) and high frequencies (0.1875-0.5625 Hz) showed recovery in CHF animals on medium and high SIM doses without changes in the low-to-high-frequency ratio. SIM beneficially affects autonomic tone in CHF as seen by the reversal of depressed HRV and total power of PSA. These data have important implications for the treatment of patients with autonomic imbalance.  相似文献   

11.
The liver is a major site of glucose disposal during chronic (5 day) total parenteral (TPN) and enteral (TEN) nutrition. Net hepatic glucose uptake (NHGU) is dependent on the route of delivery when only glucose is delivered acutely; however, the hepatic response to chronic TPN and TEN is very similar. We aimed to determine whether the route of nutrient delivery altered the acute (first 8 h) response of the liver and whether chronic enteral delivery of glucose alone could augment the adaptive response to TPN. Chronically catheterized conscious dogs received either TPN or TEN containing glucose, Intralipid, and Travasol for either 8 h or 5 days. Another group received TPN for 5 days, but approximately 50% of the glucose in the nutrition was given via the enteral route (TPN+EG). Hepatic metabolism was assessed with tracer and arteriovenous difference techniques. In the presence of similar arterial plasma glucose levels (approximately 6 mM), NHGU and net hepatic lactate release increased approximately twofold between 8 h and 5 days in TPN and TEN. NHGU (26 +/- 1 vs. 23 +/- 3 micromol.kg(-1).min(-1)) and net hepatic lactate release (44 +/- 1 vs. 34 +/- 6 micromol.kg(-1).min(-1)) in TPN+EG were similar to results for TPN, despite lower insulin levels (96 +/- 6 vs. 58 +/- 16 pM, TPN vs. TPN+EG). TEN does not acutely enhance NHGU or disposition above that seen with TPN. However, partial delivery of enteral glucose is effective in decreasing the insulin requirement during chronic TPN.  相似文献   

12.
We compared the anabolic effects of recombinant human insulin-like growth factor I (rhIGF-I, 2.5 mg/kg) and equimolar amounts of rhIGF-I prebound to rhIGF binding protein-3 (rhIGF-I/BP-3) coinfused continuously with total parenteral nutrition (TPN) solution in dexamethasone (Dex, 70 microg/day ip)-treated male rats for 6 days. The four TPN groups included control, Dex, Dex + IGF-I, and Dex+IGF-I/BP-3. Pharmacokinetic analysis indicated reduced clearance of IGF-I when infused as IGF-I/BP-3 compared with free IGF-I (0.91 +/- 0.09 vs. 2.01 +/- 0.19 ml serum/min, P < 0.001) and this was associated with significantly greater serum IGF-I concentrations in the Dex+IGF-I/BP-3 group. Despite greater total serum IGF-I levels, infusion of free IGF-I produced greater anabolic responses than IGF-I/BP-3 based on body weight, nitrogen balance, and jejunal cellularity. Treatment with free IGF-I, but not IGF-I/BP-3, significantly reduced serum insulin and glucose levels that were elevated due to Dex. There were no significant differences in liver IGF-I mRNA levels between groups. Serum IGFBP-3 levels were elevated with infusion of IGF-I/BP-3 compared with IGF-I. These results indicate greater anabolic potency of IGF-I compared with IGF-I/BP-3 when administered by continuous parenteral infusion with TPN solution in catabolic rats.  相似文献   

13.
The effect of short-term (7 days) total parenteral nutrition (TPN) on gastrin release was studied in vivo and in the isolated vascularly perfused rat stomach. The daily plasma gastrin concentration of parenterally fed rats was significantly lower than in ad lib fed control animals (53 +/- 17 pg/ml vs 159 +/- 32 pg/ml, P less than 0.05) as early as day 2 and a similar pattern was observed on days 4 and 6. The fasting plasma gastrin concentration of control animals was 2-fold greater than of the parenterally fed group (P less than 0.05). Following oral peptone, the gastrin response of TPN and control animals doubled although peak gastrin levels were greatly reduced in TPN rats. Basal gastrin release from the perfused stomachs of control rats was 2-fold greater than from TPN rats (P less than 0.05). Electrical stimulation of the vagal trunks resulted in a significantly greater elevation in gastrin secretion from control stomachs compared to TPN animals (4-fold vs. 2.4-fold increase, P less than 0.05). Quantification of the antral G-cell population revealed a significant reduction in the number of G-cell of TPN rats compared to controls (97 +/- 8 cells/mm vs 76 +/- 6 cells/mm, P less than 0.05). These results indicate that luminal nutrient stimulation is necessary for the maintenance of normal G-cell secretory activity in vivo and from the in vitro stomach. G-cell hypoplasia appears to be partially responsible for reduced gastrin output to basal and stimulated conditions after TPN.  相似文献   

14.
15.
The aim of this study was to compare circulating levels of growth hormone (GH), IGF-I, and IGF-binding protein (IGFBP)-1 and IGFBP-3 in response to a long-duration endurance exercise in trained vs. sedentary middle-aged males and to determine whether a relationship with glucose homeostasis exists. Seven trained men (Tr) were compared with seven age-matched sedentary men (Sed) during two trials of 60 min of cycling exercise performed below (-VT) and above (+VT) the ventilatory threshold. Insulin sensitivity (S(I)) was higher in Tr than in Sed (P < 0.001). Basal GH, IGF-I, and IGFBP-1 and -3 were higher in Tr (P < 0.05). During +VT, Tr had a threefold higher GH response, whereas their blood glucose level was better maintained (P < 0.05). Basal IGFBP-1 was correlated with S(I) (P < 0.01). These data indicate that endurance training in middle-aged men increased the activity of the GH/IGF-I system and improved glucoregulation both at rest and during high-intensity endurance exercise.  相似文献   

16.
Short sleep appears to be strongly associated with obesity and altered metabolic function, and sleep and growth hormone (GH) secretion seems interlinked. In obesity, both the GH-insulin-like-growth-factor-I (GH-IGF-I) axis and sleep have been reported to be abnormal, however, no studies have investigated sleep in relation to the GH-IGF-I axis and weight loss in obese subjects. In this study polygraphic sleep recordings, 24-h GH release, 24-h leptin levels, free-IGF-I, total-IGF-I, IGF-binding protein-3 (IGFBP-3), acid-labile subunit (ALS), cortisol and insulin sensitivity were determined in six severely obese subjects (BMI: 41+/-1 kg/m(2), 32+/-2 years of age), cross-sectional at baseline, and longitudinal after a dramatically diet-induced weight loss (36+/-7 kg). Ten age- and gender-matched nonobese subjects served as controls. Sleep duration (360+/-17 vs. 448+/-15 min/night; P<0.01), 24-h GH (55+/-9 vs. 344+/-55 mU/l.24 h; P<0.01), free-IGF-I (2.3+/-0.42 vs. 5.7+/-1.2 microg/l; P<0.01), and total-IGF-I (186+/-21 vs. 301+/-18 microg/l; P<0.01) were significantly decreased and 24-h leptin levels were increased (35+/-5 vs. 12+/-3 microg/l; P<0.01) in obese subjects at pre-weight loss compared with nonobese subjects After diet-induced weight loss the differences in GH, free IGF-I, and leptin were no longer present between previously obese and nonobese subjects, whereas a significant difference in sleep duration and total IGF-I levels persisted. Rapid eye movement (REM) sleep, non-REM sleep, IGFBP-3, ALS, and cortisol levels were similar in obese and nonobese subjects. Sleep duration, 24-h GH, and IGF-I levels were decreased and 24-h leptin levels were increased in obese subjects. We conclude that hyposomatotropism and hyperleptinemia in obesity are transient phenomena reversible with weight loss, whereas short sleep seems to persist after weight has been reduced dramatically.  相似文献   

17.
We examined gender differences in growth hormone (GH) secretion during rest and exercise. Eighteen subjects (9 women and 9 men) were tested on two occasions each [resting condition (R) and exercise condition (Ex)]. Blood was sampled at 10-min intervals from 0600 to 1200 and was assayed for GH by chemiluminescence. At R, women had a 3.69-fold greater mean calculated mass of GH secreted per burst compared with men (5.4 +/- 1.0 vs. 1.7 +/- 0.4 microg/l, respectively) and higher basal (interpulse) GH secretion rates, which resulted in greater GH production rates and serum GH area under the curve (AUC; 1,107 +/- 194 vs. 595 +/- 146 microg x l(-1) x min, women vs. men; P = 0.04). Compared with R, Ex resulted in greater mean mass of GH secreted per burst, greater mean GH secretory burst amplitude, and greater GH AUC (1,196 +/- 211 vs. 506 +/- 90 microg x l(-1) x min, Ex vs. R, respectively; P < 0.001). During Ex, women attained maximal serum GH concentrations significantly earlier than men (24 vs. 32 min after initiation of Ex, respectively; P = 0.004). Despite this temporal disparity, both genders had similar maximal serum GH concentrations. The change in AUC (adjusted for unequal baselines) was similar for men and women (593 +/- 201 vs. 811 +/- 268 microg x l(-1) x min), but there were significant gender-by-condition interactive effects on GH secretory burst mass, pulsatile GH production rate, and maximal serum GH concentration. We conclude that, although women exhibit greater absolute GH secretion rates than men both at rest and during exercise, exercise evokes a similar incremental GH response in men and women. Thus the magnitude of the incremental secretory GH response is not gender dependent.  相似文献   

18.
IGF binding protein-5 (IGFBP-5) modulates the availability of IGF-I to its receptor and potentiates the intestinotrophic action of IGF-I. Our aim was to test the hypothesis that stimulation of intestinal growth due to coinfusion of IGF-I with total parenteral nutrition (TPN) solution is dependent on increased expression of IGFBP-5 through conducting our studies in IGFBP-5 knockout (KO) mice. IGFBP-5 KO, heterozygote (HT) and wild type (WT) male and female mice were maintained with TPN or TPN plus coinfusion of IGF-I [recombinant human (rh)IGF-I; 2.5 mg x kg(-1) x day(-1)] for 5 days. The concentration of IGF-I in serum was 73% greater (P < 0.0001) in mice given TPN + IGF-I infusion compared with TPN alone. IGF-I attenuated the 2-3 g loss of body weight associated with TPN in WT mice, whereas KO and HT mice did not show improvement in body weight with IGF-I treatment. KO and HT mice had significantly greater levels of circulating IGF-I binding proteins (IGFBPs) compared with WT mice. Intestinal growth due to IGF-I was observed in all groups treated with IGF-I based on greater concentrations of protein and DNA in small intestine and colon and significantly greater crypt depth and muscularis thickness in jejunum. Jejunal expression of IGFBP-5 mRNA was greater in WT mice, whereas IGFBP-3 mRNA was greater in KO mice treated with IGF-I. In summary, the absence of the IGFBP-5 gene did not block the ability of IGF-I to stimulate intestinal growth, possibly because greater jejunal expression of IGFBP-3 compensates for the absence of IGFBP-5.  相似文献   

19.
Diabetes mellitus was induced using streptozotocin in five gilts between 8 and 12 weeks of age. Gilts were maintained with exogenous insulin (INS) except during experimental periods. Four litter-mate gilts served as controls. At 9 months of age, all gilts were ovariectomized, and 30 days after ovariectomy, Experiment (Exp) 1 was conducted. Jugular vein catheters were inserted and blood samples were collected every 10 min for 8 hr. Experiment 2 was conducted when gilts were 11 months of age. Venous blood and cerebrospinal fluid (CSF) samples were collected in the absence (Phase I) or presence (Phase II) of INS therapy. In Experiment 1, plasma glucose concentrations were greater (P < 0.05) in diabetic (465 +/- 17 mg/100 ml) than in control (82 mg +/- 17 mg/100 ml) gilts, whereas serum INS was lower (P < 0.0001) in diabetic gilts (0.3 +/- 0.02 vs 0.9 +/- 0.05 ng/ml) and insulin-like growth factor-I was similar in diabetic and control gilts (32 +/- 3 vs 43 +/- 4 ng/ml, respectively). Mean serum GH concentration was 2-fold greater (P < 0.02) in diabetics (2.8 +/- 0.4 ng/ml) than in control gilts (1.2 +/- 0.2 ng/ml). Diabetic gilts exhibited a greater (P < 0.05) number of GH pulses than control gilts (3.2 +/- 0.4 vs 1.5 +/- 0.3/8 hr, respectively). In addition, GH pulse magnitude was markedly elevated (P < 0.02) in diabetic (5.8 +/- 0.4 ng/ml) compared with control gilts (3.3 +/- 0.6 ng/ml). Mean basal serum GH concentrations were greater (P < 0.07) in diabetic (2.2 +/- 0.5 ng/ml) compared with control gilts (1.0 +/- .1 ng/ml). In Experiment 2, CSF concentrations of insulin-like growth factor-I, INS, GH, and protein were similar for diabetic and control gilts in both phases. Serum GH levels were similar for diabetics and controls in Phase I, but were greater (P < 0.05) in diabetics than in controls in Phase II. CSF glucose levels were greater in diabetic than in control gilts in both the presence (P < 0.003) and absence (P < 0.0002) of INS therapy, whereas plasma glucose was greater (P < 0.003) in diabetic than in control gilts in the absence of INS, but returned to control concentrations in the presence of INS. However, serum GH levels were unchanged after INS therapy in the diabetic gilts. In conclusion, altered GH secretion in the diabetic gilt may, in part, be due to elevated CSF glucose concentrations, which may alter GH-releasing hormone and/or somatostatin secretion from the hypothalamus.  相似文献   

20.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号