首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

2.
Thyrotropin releasing hormone (TRH) caused significant breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) in GH3 cells, but vasoactive intestinal peptide (VIP) did not. However, VIP enhanced the TRH-induced hydrolysis of PIP2, the conversion of phosphatidylinositol 4-phosphate (PIP) to PIP2 and the accumulation of phosphatidic acid (PA). On the other hand, the tumor promoter, tetradecanoyl phorbol acetate (TPA), suppressed the TRH-induced hydrolysis of PIP2. In the membrane fraction, the addition of cAMP inhibited the PI kinase activity in a dose-dependent manner, but stimulated the PIP kinase activity. TPA did not affect the PI and PIP kinase activities at all. VIP enhanced the first spike phase of the TRH-induced increase in the intracellular Ca2+ level, while TPA inhibited such Ca2+ mobilization. These results suggested that cAMP-increasing agents enhanced inositol phospholipid metabolism and Ca2+ mobilization induced by TRH in GH3 cells but that TPA inhibited them.  相似文献   

3.
The role of extracellular signal-regulated kinase (ERK) in mediating the ability of thyrotropin-releasing hormone (TRH) to stimulate the prolactin gene has been well elucidated. ERK is inactivated by a dual specificity phosphatase, mitogen-activated protein kinase phosphatase (MKP). In this study, we examined the induction of MKP-1 protein by thyrotropin-releasing hormone (TRH) in pituitary GH3 cells, and investigated the possible role for MKP-1 in TRH-induced prolactin gene expression. MKP-1 protein was induced significantly from 60 min after TRH stimulation, and remained elevated at 4 h. The effect of TRH on MKP-1 expression was completely prevented in the presence of the MEK inhibitor, U0126. In the experiments using triptolide, a potent blocker for MKP-1, MKP-1 induction by TRH was completely inhibited in a dose-dependent manner. TRH-induced ERK activation was significantly enhanced in this condition. Prolactin promoter activity, activated by TRH, was reduced to the control level in the presence of triptolide in a dose-dependent manner. In GH3 cells, which were transfected with MKP-1 specific siRNA, both the basal and TRH-stimulated activities of the prolactin promoter were significantly reduced compared to the cells transfected with negative control siRNA. Our present results support a critical role of MKP-1 in TRH-induced, ERK-dependent, prolactin gene expression.  相似文献   

4.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

5.
The activation of mitogen-activated protein kinase (MAP kinase) and the regulation of cyclooxygenase 2 (COX-2) were investigated in the human endometrial adenocarcinoma cell line HEC-1B by treatment with platelet-activating factor (PAF) and hCG. Pre-treatment of the cells with both oestradiol and medroxyprogesterone acetate was required for MAP kinase activation and COX-2 expression to respond to PAF and hCG. PAF-induced MAP kinase activation was sensitive to MAP kinase kinase (MEK) inhibitor, PD098059, and phosphatidylinositol-3-OH kinase (PI3K) inhibitor, wortmannin. In contrast, hCG-induced MAP kinase activation was sensitive to PD098059 and protein kinase A inhibitor, H-89, but not to wortmannin. PAF-induced COX-2 expression was insensitive to PD098059 but sensitive to wortmannin, whereas hCG-induced COX-2 expression was sensitive to PD098059 and H-89 but insensitive to wortmannin. 8-(4-chlorophenylthio)-cAMP, a potent cAMP analogue, induced activation of MAP kinase and expression of COX-2. These results indicate that MAP kinase is activated with PAF and hCG in HEC-1B cells. In addition, COX-2 expression is stimulated through the MAP kinase activation pathway with hCG and the wortmannin sensitive pathway with PAF in HEC-1B cells. These results also imply that protein kinase A remains upstream of hCG-induced activation of MAP kinase in HEC-1B cells.  相似文献   

6.
7.
Cyclo(Histidyl-Proline) is a metabolite of thyrotropin-releasing hormone. It has been suggested that this peptide plays a role in regulating prolactin secretion in GH cells. An investigation of the effect of cyclo(His-Pro) on GH cells indicated that it does not affect basal prolactin release or accumulation or the levels stimulated by TRH. cAMP levels in GH cells are elevated by TRH or VIP, but not influenced by cyclo(His-Pro). cGMP levels in GH cells are not affected by either TRH or cyclo(His-Pro). While there is specific binding of TRH to receptors in GH cells, no such receptors for cyclo(His-Pro) are detectable. It is suggested that GH cells are unresponsive to cyclo(His-Pro).  相似文献   

8.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

9.
The effects of pertussis toxin on the responses of rat pituitary-tumour (GH) cells to thyrotropin-releasing hormone (thyroliberin, TRH) were examined. Treatment of cells with pertussis toxin did not alter the affinity or concentration of TRH receptors, or the sensitivity of the TRH receptor to inhibition by guanine nucleotides. TRH caused an increase in low-Km GTPase activity in membrane-containing fractions from both control and pertussis-toxin-treated cells. TRH stimulation of inositol phosphate formation was insensitive to pertussis toxin. TRH caused a biphasic increase in the concentrations of cytosolic free Ca2+ as monitored by intracellularly trapped Quin 2, and this increase was the same in control and toxin-treated cultures. The toxin did not alter the increase in prolactin and growth-hormone (somatotropin) release stimulated by TRH or shift the TRH dose-response curve, and it did not affect the TRH-induced rise in prolactin synthesis measured over 24 h. However, pertussis toxin did block the ability of somatostatin and muscarinic agonists to inhibit prolactin and growth-hormone secretion stimulated by vasoactive intestinal peptide when analysed under the same conditions as those in which the TRH system was unaffected. These data indicate that the guanine nucleotide effects on TRH binding and activity are not mediated by Ni, but possibly by another member of the family of guanine-nucleotide-dependent regulatory proteins.  相似文献   

10.
Thyrotropin-releasing hormone (TRH) affects hormone secretion and synthesis in GH4C1 cells, a clonal strain of rat pituitary cells. Recent evidence suggests that the intracellular mediators, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, which are generated as a result of TRH-induced hydrolysis of the polyphosphatidylinositols, may be responsible for some of the physiological events regulated by TRH. Because diacylglycerol is an activator of protein kinase C, we have examined a role for this enzyme in TRH action. The subcellular distribution of protein kinase C in control and TRH-treated cells was determined by measuring both enzyme activity and 12,13-[3H]phorbol dibutyrate binding in the cytosol and by measuring enzyme activity in the particulate fraction. Acute exposure of GH4C1 cells to TRH resulted in a decrease of cytosolic protein kinase C, and an increase in the level of the enzyme associated with the particulate fraction. The redistribution of protein kinase C induced by TRH was dose- and time-dependent, with maximal effects occurring within the first minute of TRH treatment. Analogs of TRH which do not bind to the TRH receptor did not induce redistribution of protein kinase C, while the active analog, methyl-TRH, did promote redistribution. Treatment of GH4C1 cells with phorbol myristate acetate also resulted in a shift in protein kinase C distribution, although the response was slower than that produced by TRH. TRH-induced redistribution of protein kinase C implies translocation of the enzyme from a soluble to a membrane-associated form. Because protein kinase C requires a lipid environment for activity, association with the membrane fraction of the cell suggests activation of the enzyme; thus, protein kinase C may play a role in some of the actions of TRH on GH4C1 cells.  相似文献   

11.
12.
N Sato  X Wang  M A Greer 《Cell calcium》1992,13(3):173-182
With 1.5 mM [Ca2+]e, 10 nM TRH induced a prompt high-amplitude burst of hormone secretion and an initial high-amplitude [Ca2+]i burst (first phase) followed by a sustained low-amplitude [Ca2+]i increment (second phase) in both tumor-derived GH4C1 and normal adenohypophyseal (AP) cells. With less than 2 microM [Ca2+]e, in both cell types the TRH-induced first phase rise in [Ca2+]i was suppressed 30% while the second phase rise was completely abolished; however, hormone secretion was inhibited only 20-30% in GH4C1 but greater than 80% in AP cells. Thapsigargin induced a first-phase rise in [Ca2+]i in AP cells equal to that induced by 10 nM TRH but only 20% as much first-phase hormone secretion. Blocking Ca2+ channels with nifedipine inhibited TRH-induced secretion in AP cells significantly more than in GH4C1 cells. Our data indicate that the TRH-induced first-phase spike in [Ca2+]i from intracellular Ca2+ stores may play a major transduction role in hormone secretion in GH4C1 cells but not in normal AP cells. Transduction mechanisms coupled to Ca2+ influx through Ca2+ channels in the plasmalemma are apparently a much more important component of TRH-induced secretion in normal than in tumor-derived pituitary cells.  相似文献   

13.
The regulation of expression of cyclooxygenase 2 (COX-2) was investigated by treatment with PGE(2) in human endometrial adenocarcinoma cell line HEC-1B. One microM PGE(2) could stimulate the expression of COX-2 approximately twofold in this cell line. The same concentration of PGE(2) also stimulated activation of mitogen-activated protein kinase (MAP kinase) and protein kinase B (PKB). PGE(2)-induced MAP kinase activation was sensitive to a MAP kinase kinase (MEK) inhibitor, PD098059, and a protein kinase A inhibitor, H-89. PD098059 and H-89 also partially inhibited the expression of COX-2 stimulated by PGE(2). PGE(2) could stimulate the activation of PKB, which was sensitive to phosphatidylinositol-3-OH kinase (PI3K) inhibitor, wortmannin. Whereas wortmannin alone partially inhibited the expression of COX-2, a combination of wortmannin and PD098059 totally inhibited PGE(2)-mediated COX-2 expression. These results suggest that MAP kinase and PI3K pathways are stimulated with PGE(2), and that both of these pathways are involved in the expression of COX-2. In addition, they also suggest that protein kinase A remains upstream of PGE(2)-induced activation of MAP kinase in HEC-1B cells.  相似文献   

14.
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.  相似文献   

15.
Bromocriptine, a dopamine D(2) receptor agonist, is a therapeutic agent for patients with prolactinoma and hyperprolactinemia. In this study we demonstrated that bromocriptine induced activation of p38 mitogen-activated protein (MAP) kinase, with concomitant induction of apoptosis in rat pituitary adenoma cell line GH3 cells. Treatment of GH3 cells for 48 h with bromocriptine increased the p38 MAP kinase activity up to 3- to 5-fold and simultaneously increased the number of apoptotic cells. Inclusion in the medium of SB212090 or SB203580, specific p38 MAP kinase inhibitors, completely abolished the bromocriptine-induced activation of p38 MAP kinase and significantly reduced the number of apoptotic cells. The bromocriptine-induced p38 MAP kinase activation was not prevented by S(-)-eticropride hydrochloride, a specific D(2) receptor antagonist. Treatment with either epidermal growth factor (EGF) or thyrotropin-releasing hormone (TRH), which stimulates p44/42 MAP kinase, rescued cells from the bromocriptine-induced apoptosis, with concomitant inhibition of the bromocriptine-induced p38 MAP kinase activation. These results suggest that bromocriptine induces apoptosis in association with p38 MAP kinase activation, and that the p44/42 MAP kinase signaling through EGF and TRH receptors has an opposing effect on p38 MAP kinase activation as well as on apoptosis induced with bromocriptine in GH3 cells.  相似文献   

16.
MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.  相似文献   

17.
The effect of decreasing the concentration of receptors for thyrotropin-releasing hormone (TRH) on the surface of cloned rat pituitary (GH3) cells on TRH-stimulated inositol trisphosphate (Ins-P3) formation was investigated. Incubation of cells with dibutyryl cAMP (Bt2cAMP) for 16 h caused a decrease in [3H] TRH binding to intact cells to a minimum level 37 +/- 9.1% of control. Scatchard analysis of the concentration dependency of [3H]TRH binding showed that the effect of Bt2cAMP was to lower the receptor concentration without affecting its affinity for TRH. Similar decreases in [3H]TRH binding were found in cells incubated with 8-bromo-cAMP, cholera toxin, and sodium butyrate and, as shown previously, with TRH. In cells incubated with 1 mM Bt2cAMP for 16 h, but not for 1 h, the maximum TRH-induced increase in Ins-P3 was inhibited to 25 +/- 3.2% of that in control cells. Inhibition of TRH-induced Ins-P3 formation was also observed in cells treated with 8-bromo-cAMP, cholera toxin, and sodium butyrate for 16 h, and with TRH for 48 h. Inhibition of TRH-induced Ins-P3 formation and lowering of TRH receptor concentration caused by Bt2cAMP occurred in parallel with increasing doses of Bt2cAMP; at 16 h of exposure, half-maximal effects occurred with 0.3 mM Bt2cAMP. The concentration dependency of TRH-induced Ins-P3 formation was the same in control and Bt2cAMP-treated cells; half-maximal effects occurred with 10 nM TRH. These data demonstrate that decreases in TRH receptor concentration caused by several agents that act via different mechanisms are associated with reduced stimulation of Ins-P3 formation and suggest that the TRH receptor is tightly coupled to stimulation of hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phospholipase C.  相似文献   

18.
19.
Thyrotropin-releasing hormone stimulation of prolactin secretion from rat pituitary (GH3) cells is biphasic with a secretory burst (0-2 min) at a higher rate, followed by sustained secretion (beyond 2 min) at a lower rate. Based on the effects of calcium ionophores, K+ depolarization, and diacylglycerol (or phorbol esters), it was suggested that the secretory burst is dependent on elevation of cytoplasmic free calcium concentration [( Ca2+]i) whereas sustained secretion is mediated by lipid-activated protein phosphorylation. In this study, we pretreated GH3 cells with 0.03 mM arachidonic acid to abolish thyrotropin-releasing hormone-induced elevation of [Ca2+]i (Kolesnick, R. N., and Gershengorn, M. C. (1985) J. Biol. Chem. 260, 707-713). In control cells, basal secretion was 0.7 +/- 0.2 ng/10(6) cells/min which increased to 8.3 +/- 0.8 between 0 and 2 min after TRH and remained elevated at 3.3 +/- 0.2 between 2-10 min. In cells pretreated with arachidonic acid, TRH stimulated prolactin secretion to only 2.6 +/- 0.3 ng/10(6) cells/min between 0 and 2 min and to 3.2 +/- 0.2 between 2 to 10 min; these values are not different from each other nor from the response between 2 and 10 min in control cells. K+ depolarization, which elevates [Ca2+]i even in arachidonic acid-pretreated cells but does not affect lipid metabolism, caused only a secretory burst. Bovine serum albumin, which binds free arachidonic acid and reverses arachidonic acid inhibition of TRH-induced elevation of [Ca2+]i, reversed the inhibition of the secretory burst stimulated by TRH. These studies present direct evidence that the burst of prolactin secretion stimulated by TRH is dependent on an elevation of [Ca2+]i whereas the sustained phase of secretion is independent of such elevation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号