共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. 相似文献
2.
Labrou NE 《Molecular biotechnology》2002,20(1):77-84
Affinity chromatography is widely employed in laboratory and large-scale for the purification of biotherapeutics and diagnostics.
Some of the most widely used ligands in affinity chromatography have been several reactive chlorotriazine dyes. In particular,
immobilized anthraquinone dyes have found a plethora of applications in affinity chromatography because they are inexpensive,
are resistant to chemical and biological degradation, are sterilizable and cleanable in situ, and are readily immobilized to generate affinity absorbents which display high binding capacity for a broad spectrum of
proteins.
This article provides detailed protocols on the preparation of a dye-ligand affinity adsorbent. Also, detailed protocols for
effective application of these media, emphasizing binding and elution conditions are presented. 相似文献
3.
L Chandonnet K D Roberts A Chapdelaine P Manjunath 《Molecular reproduction and development》1990,26(4):313-318
A group of four similar proteins, BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa, represent the major acidic proteins found in bovine seminal plasma (BSP). These proteins are secretory products of the seminal vesicles; they bind to spermatozoa upon ejaculation and could represent decapacitation factors. It has been shown that the glycosaminoglycans present in the female reproductive tract are involved in the capacitation of spermatozoa. Therefore, it was of interest to investigate whether BSP-A1, -A2, -A3, and -30-kDa proteins of bovine seminal fluid interact with heparin. Chromatography of alcohol precipitates of bovine seminal fluid on a heparin-Sepharose column resolved these proteins into three peaks. Peaks 1 and 2 (retarded proteins) were eluted upon extensive washing of the column with 0.05 M phosphate buffer, pH 7.4 (equilibrating buffer), and accounted for approximately 25% of the applied proteins. Proteins in peak 3 represented adsorbed proteins and were eluted with phosphate buffer containing 1 M NaCl. Proteins in each peak were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions. Peak 1 contained proteins with molecular weights ranging from 8 to 350 kDa, peak 2 contained a single protein with a molecular weight of 14 kDa, and peak 3 contained proteins with molecular weights of 15.5, 16, 25, and 30 kDa. The proteins in peak 3 were further resolved into unadsorbed (peak 4) and adsorbed (peak 5) proteins on a gelatin-Agarose column. Separation of the proteins of peak 3 and peak 5 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents followed by transfer to nitrocellulose and probing with antibodies against the previously well-characterized BSP proteins indicated the presence of BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa proteins.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Lind C Gerdes R Hamnell Y Schuppe-Koistinen I von Löwenhielm HB Holmgren A Cotgreave IA 《Archives of biochemistry and biophysics》2002,406(2):229-240
Redox modification of proteins is proposed to play a central role in regulating cellular function. However, high-throughput techniques for the analysis of the redox status of individual proteins in complex mixtures are lacking. The aim was thus to develop a suitable technique to rapidly identify proteins undergoing oxidation of critical thiols by S-glutathionylation. The method is based on the specific reduction of mixed disulfides by glutaredoxin, their reaction with N-ethylmaleimide-biotin, affinity purification of tagged proteins, and identification by proteomic analysis. The method unequivocally identified 43 mostly novel cellular protein substrates for S-glutathionylation. These include protein chaperones, cytoskeletal proteins, cell cycle regulators, and enzymes of intermediate metabolism. Comparisons of the patterns of S-glutathionylated proteins extracted from cells undergoing diamide-induced oxidative stress and during constitutive metabolism reveal both common protein substrates and substrates failing to undergo enhanced S-glutathionylation during oxidative stress. The ability to chemically tag, select, and identify S-glutathionylated proteins, particularly during constitutive metabolism, will greatly enhance efforts to establish posttranslational redox modification of cellular proteins as an important biochemical control mechanism in coordinating cellular function. 相似文献
5.
Chung JA Wollack JW Hovlid ML Okesli A Chen Y Mueller JD Distefano MD Taton TA 《Analytical biochemistry》2009,386(1):1-5707
Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their nonprenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography medium that has been chemically functionalized with β-cyclodextrin (β-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target (“CAAX box”) sequences were enzymatically prenylated in vitro with natural and nonnatural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a β-CD-Sepharose column. One particular prenylation reaction, farnesylation of an mCherry-CAAX fusion construct, was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a nonnatural, functional isoprenoid substrate, the functional group was maintained by chromatography on β-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, β-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation. 相似文献
6.
Sun G Guo M Shen A Mei F Peng X Gong R Guo D Wu J Tien P Xiao G 《FEBS letters》2005,579(24):5419-5424
We used a bovine brain cDNA library to perform a yeast two-hybrid assay with bovine mature PrP(C) as bait. The screening result showed that alphaB-crystalline interacted with PrP(C). The interaction was further evaluated both in vivo and in vitro with different methods, such as immunofluorescent colocalization, native polyacrylamide-gel electrophoresis, and IAsys biosensor assays. The results suggested that alphaB-crystalline may have the ability to refold denatured prion proteins, and provided first evidence that alphaB-crystalline is directly associated with prion protein. 相似文献
7.
Chitosan/cellulose-based beads (CCBs) for the affinity purification of histidine-tagged proteins were prepared from chitosan/cellulose dissolved in ionic liquid as a solvent, and their structures were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The affinity purification was used to separate hexahistidine-tagged (his-tagged) enhanced green fluorescent protein (EGFP) from Escherichia coli. The results showed that Zn2+–CCB exhibited more specific adsorption capacity toward the target protein compared with Ni2+–CCB and Cu2+–CCB. The maximum adsorption of EGFP was 1.84?mg/g of Zn2+–CCB, with 90% purity under the optimized conditions (ionic strength (1.0?M NaCl), pH (7.2) and imidazole concentration (500?mM)). In addition, a regeneration method for the sorbent was further developed by washing with ethylenediaminetetraacetic acid disodium and then reimmobilizing with metal ions. This technique is an alternative method for the purification of his-tagged proteins, making the process more economical, fast, stable, and large batch. 相似文献
8.
9.
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates. 相似文献
10.
Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose–BSA probe was inhibited by l-fucose but not by α-methyl-d-mannose. 相似文献
11.
Gerhard E. Gerber Dev Mangroo Bernardo L. Trigatti 《Molecular and cellular biochemistry》1993,123(1-2):39-44
A photoaffinity labeling method was developed to identify and characterize high affinity fatty acid-binding proteins in membranes. The specific labeling of these sites requires the use of low concentrations (nanomolar) of the photoreactive fatty acid 11-m-diazirinophenoxy-[11-3H]undecanoate. It was delivered as a bovine serum albumin (BSA) complex which serves as a reservoir for fatty acid and thus allows precise control of unbound fatty acid concentrations. ThefadL protein ofE. coli, which is required for fatty acid permeation of its outer membrane, was labeled by the photoreactive fatty acid neither specifically nor saturably when the probe was added in the absence of BSA; however when a nanomolar concentration of the uncomplexed probe was maintained in the presence of BSA, the labeling of thefadL protein was highly specific and saturable. This photoaffinity labeling method was also used to characterize a 22 kDa, high affinity fatty acid-binding protein which we have recently identified in the plasma membrane of 3T3-L1 adipocytes. This protein bound the probe with a Kd of 216 nM. The approach described is easily capable of identifying membrane-bound fatty acid-binding proteins and can distinguish between those of high and low affinities for fatty acids. It represents a general method for the identification and characterization of fatty acid-binding proteins.Abbreviations BSA
Bovine Serum Albumin
- DAP
m-Diazirinophenoxy
- SDS-PAGE
Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 相似文献
12.
This report demonstrates that due to the presence of residual reactive sites in their matrices, classical diethylaminoethyl-attaching commercial anion-exchanger resins such as DEAE-MacroPrep and DEAE-Sephadex A50 supports can be used for peptide synthesis. Moreover, due to the high stability of the peptide-resin bond in the final cleavage treatments, desired peptidyl-resins free of side-chain protecting groups, which enables them to be further used as solid support for affinity chromatography, can be obtained. To demonstrate this potentiality, a fragment corresponding to the antigenic and immunodominant epitope of sporozoites of the Plasmodium falciparum malaria parasite was synthesized in these traditional resins and antibody molecules generated against the peptide sequence were successfully retained in these peptidyl supports. Due to the maintenance of their original anion-exchange capacities, the present findings open the unique possibility of applying, simultaneously, dual anion-exchange and affinity procedures for purification of a variety of macromolecules. 相似文献
13.
Non-human primates are an important biomedical research model organism and offer great promise for serum biomarker proteomic studies. However, potential obstacles to these studies include affinity serum depletion methods based on human antigens, depletion methods altering quantitation, and incomplete non-human primate genome sequences for protein identification. In the present study, high-abundance protein removal from monkey serum using a human multiple affinity removal system (MARS) was shown to be specific and did not alter quantitation. Depleted serum also demonstrated greater sensitivity for previously masked, lower-abundance proteins. 相似文献
14.
Arruda-Carvalho M Njaine B Silveira MS Linden R Chiarini LB 《Biochemical and biophysical research communications》2007,361(2):474-480
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP(C)). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP(C) dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (alpha-STI1) blocked both ganglion cell and NBL cell death independent of PrP(C). cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while alpha-STI1 increased proliferation in the developing retina, both independent of PrP(C). We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP(C). 相似文献
15.
The cellular prion protein (PrP(C)), a highly conserved glycoprotein predominantly expressed by neuronal cells, can convert into an abnormal isoform (PrP(Sc)) and provoke a transmissible spongiform encephalopathy. In spite of many studies, the physiological function of PrP(C) remains unknown. Recent findings suggest that PrP(C) is a multifunctional protein participating in several cellular processes. Using recombinant human PrP as a probe, we performed far-Western immunoblotting (protein overlay assay) to detect cellular PrP(C) interactors. Brain extracts of wild-type and PrP knockout mice were screened by far-Western immunoblotting for PrP-specific interactions. Subsequently, putative ligands were isolated by 2-DE and identified by MALDI-TOF MS, enabling identification of heterogeneous nuclear ribonucleoprotein A2/B1 and aldolase C as novel interaction partners of PrP(C). These data provide the first evidence of a molecule indicating a mechanism for the predicted involvement of PrP(C) in nucleic acid metabolisms. In summary, we have shown the successful combination of 2-DE with far-Western immunoblotting and MALDI-TOF MS for identification of new cellular binding partners of a known protein. Especially the application of this technique to investigate other neurodegenerative diseases is promising. 相似文献
16.
Thomas C. Scanlon Thomas M. Durcan Edward A. Fon Lenore K. Beitel Mark A. Trifiro 《Experimental cell research》2009,315(2):176-189
The proteasome is the primary subcellular organelle responsible for protein degradation. It is a dynamic assemblage of 34 core subunits and many differentially expressed, transiently interacting, modulatory proteins. This paper describes a novel affinity chromatography method for the purification of functional human holoproteasome complexes using mild conditions. Human proteasomes purified by this simple procedure maintained the ability to proteolytically process synthetic peptide substrates and degrade ubiquitinated parkin. Furthermore, the entire purification fraction was analyzed by mass spectrometry in order to identify proteasomal proteins and putative proteasome-interacting proteins. The mild purification conditions maintained transient physical interactions between holoproteasomes and a number of known modulatory proteins. In addition, several classes of putative interacting proteins co-purified with the proteasomes, including proteins with a role in the ubiquitin proteasome system for protein degradation or DNA repair. These results demonstrate the efficacy of using this affinity purification strategy for isolating functional human proteasomes and identifying proteins that may physically interact with human proteasomes. 相似文献
17.
Here we present first dinucleotide affinity resins for purification of proteins that specifically recognize the 5' end of mRNA. Constructed resins possess either a naturally occurring mono- or trimethylated cap or their analogues resistant towards enzymatic degradation, bearing a CH(2) bridge between β and γ position of the 5',5'-triphosphate chain. All cap analogues were attached to a polymer support (EAH-Sepharose) through the carboxylic group that had been generated by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid. 相似文献
18.
Giovanni Magistrelli Yves Poitevin Florence Schlosser Guillemette Pontini Pauline Malinge Soheila Josserand 《MABS-AUSTIN》2017,9(2):231-239
When production of bispecific antibodies requires the co-expression and assembly of three or four polypeptide chains, low expression of one chain can significantly limit assembly and yield. κλ bodies, fully human bispecific antibodies with native IgG structure, are composed of a common heavy chain and two different light chains, one kappa and one lambda. No engineering is applied to force pairing of the chains, thus both monospecific and bispecific antibodies are secreted in the supernatant. In this context, stoichiometric expression of the two light chains allows for maximal assembly of the bispecific antibody. In this study, we selected a κλ body with suboptimal characteristics due to low kappa chain expression. Codon optimization to increase expression of the kappa chain did not improve bispecific yield. Surprisingly, progressive introduction of non-optimal codons into the sequence of the lambda chain resulted in lowering its expression for an optimal tuning of the relative distribution of monospecific and bispecific antibodies. This codon de-optimization led to doubling of the κλ body yield. These results indicate that assembly of different proteins into a recombinant complex is an interconnected process and that reducing the expression of one polypeptide can actually increase the overall yield. 相似文献
19.
Hiroo Katayama Mitchell McGill Andrew Kearns Marek Brzozowski Nicholas Degner Bliss Harnett Boris Kornilayev Dubravka Matković-Čalogović Todd Holyoak James P. Calvet Edward P. Gogol John Seed Mark T. Fisher 《Journal of structural and functional genomics》2009,10(1):57-66
Obtaining a proper fold of affinity tagged chimera proteins can be difficult. Frequently, the protein of interest aggregates
after the chimeric affinity tag is cleaved off, even when the entire chimeric construct is initially soluble. If the attached
protein is incorrectly folded, chaperone proteins such as GroEL bind to the misfolded construct and complicate both folding
and affinity purification. Since chaperonin/osmolyte mixtures facilitate correct folding from the chaperonin, we explored
the possibility that we could use this intrinsic binding reaction to advantage to refold two difficult-to-fold chimeric constructs.
In one instance, we were able to recover activity from a properly folded construct after the construct was released from the
chaperonin in the presence of osmolytes. As an added advantage, we have also found that this method involving chaperonins
can enable researchers to decide (1) if further stabilization of the folded product is required and (2) if the protein construct
in question will ever be competent to fold with osmolytes. 相似文献
20.
Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system. 相似文献