首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Good genes models of mate choice predict additive genetic benefits of choice whereas the compatibility hypothesis predicts nonadditive fitness benefits. Here the Chinese rose bitterling, Rhodeus ocellatus, a freshwater fish with a resource‐based mating system, was used to separate additive and nonadditive genetic benefits of female mate choice. A sequential blocked mating design was used to test female mate preferences, and a cross‐classified breeding design coupled with in vitro fertilizations for fitness benefits of mate choice. In addition, the offspring produced by the pairing of preferred and nonpreferred males were reared to maturity and their fitness traits were compared. Finally, the MHC DAB1 gene was typed and male MHC genotypes were correlated with female mate choice. Females showed significant mate preferences but preferences were not congruent among females. There was a significant interaction of male and female genotype on offspring survival, rate of development, growth rate, and body size. No significant male additive effects on offspring fitness were observed. Female mate preferences corresponded with male genetic compatibility, which correlated with MHC dissimilarity. It is proposed that in the rose bitterling genetic compatibility is the mechanism by which females obtain a fitness benefit through mate choice and that male MHC dissimilarity, likely mediated by odor cues, indicates genetic compatibility.  相似文献   

2.
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected.  相似文献   

3.
Consistently with the prediction that selection should deplete additive genetic variance ( VA ) in fitness, traits closely associated to fitness have been shown to exhibit low heritabilities ( h 2= VA /( VA + VR )). However, empirical data from the wild indicate that this is in fact due to increased residual variance ( VR ), rather than due to decreased additive genetic variance, but the studies in this topic are still rare. We investigated relationships between trait heritabilities, additive genetic variances, and traits' contribution to lifetime reproductive success (≈fitness) in a red-billed gull ( Larus novaehollandiae ) population making use of animal model analyses as applied to 15 female and 13 male traits. We found that the traits closely associated with fitness tended to have lower heritabilities than traits less closely associated with fitness. However, in contrast with the results of earlier studies in the wild, the low heritability of the fitness-related traits was not only due to their high residual variance, but also due to their low additive genetic variance. Permanent environment effects—integrating environmental effects experienced in early life as well as nonadditive genetic effects—on many traits were large, but unrelated to traits' importance for fitness.  相似文献   

4.
Explanations for the evolution of polyandry often center on the idea that females garner genetic benefits for their offspring by mating multiply. Furthermore, postcopulatory processes are thought to be fundamental to enabling polyandrous females to screen for genetic quality. Much attention has focused on the potential for polyandrous females to accrue such benefits via a sexy‐ or good‐sperm mechanism, whereby additive variation exists among males in sperm competitiveness. Likewise, attention has focused on an alternative model, in which offspring quality (in this context, the sperm competitiveness of sons) hinges on an interaction between parental haplotypes (genetic compatibility). Sperm competitiveness that is contingent on parental compatibility will exhibit nonadditive genetic variation. We tested these models in the Australian cricket, Teleogryllus oceanicus, using a design that allowed us to partition additive, nonadditive genetic, and parental variance for sperm competitiveness. We found an absence of additive and nonadditive genetic variance in this species, challenging the direct relevance of either model to the evolution of sperm competitiveness in particular, and polyandry in general. Instead, we found maternal effects that were possibly sex‐linked or cytoplasmically linked. We also found effects of focal male age on sperm competitiveness, with small increments in age conferring more competitive sperm.  相似文献   

5.
Theory suggests that multiple mating by females can evolve as a mechanism for acquiring compatible genes that promote offspring fitness. Genetic compatibility models predict that differences in fitness among offspring arise from interactions between male and female haplotypes. Using a cross-classified breeding design and in vitro fertilization, we raised families of maternal and paternal half-siblings of the frog Crinia georgiana, a species with a polyandrous breeding system and external fertilization. After controlling for variation in maternal provisioning, we found significant effects of interacting parental haplotypes on fertilization success, and nonadditive genetic effects on measures of offspring fitness such as embryo survival, and survival to, size at, and time to metamorphosis. Additive genetic variation due to males and females was negligible, and not statistically significant for any of the fitness traits measured. Combinations of parental haplotypes that resulted in high rates of fertilization produced offspring with higher embryo survival and rapid juvenile development. We suggest that a gamete recognition mechanism for selective fertilization by compatible sperm may promote offspring fitness in this system.  相似文献   

6.
Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.  相似文献   

7.
Directional and stabilizing selection tend to deplete additive genetic variance. On the other hand, genetic variance in traits related to fitness could be retained through polygenic mutation, spatially varying selection, genotype-environment interaction, or antagonistic pleiotropy. Most estimates of genetic variance in fitness-related traits have come from laboratory studies, with few estimates of heritability made under natural conditions, particularly for longer lived organisms. Here I estimated additive genetic variance in life-history characters of a monocarpic herb, Ipomopsis aggregata, that lives for up to a decade. Experimental crosses yielded 229 full-sibships nested within 32 paternal half-sibships. More than 5000 offspring were planted as seeds into natural field sites and were followed in most cases through their entire life cycle. Survival showed substantial additive genetic variance (genetic coefficient of variation ≈ 54%). Small differences at seedling emergence were magnified over time, such that the genetic variability in survival was only detectable by tracking the success of offspring for several years starting from seed. In contrast to survival, reproductive traits such as flower number, seeds per flower, and age at flowering showed little or no genetic variability. Despite relatively high levels of additive genetic variation for some life-history characters, high environmental variance in survival resulted in very low heritabilities (0–9%) for all of these characters. Maternal effects were evident in seed mass and remained strong throughout the lengthy vegetative period. No negative genetic correlations between major components of female fitness were detected. Mean corolla width for a paternal family was, however, negatively correlated with the finite rate of increase based on female fitness. That negative correlation could help to maintain additive genetic variance in the face of strong selection through male function for wide corollas.  相似文献   

8.
The observation that traits closely related to fitness ("fitness traits") have lower heritabilities than traits more distantly associated with fitness has traditionally been framed in terms of Fisher's fundamental theorem of natural selection-fitness traits are expected to have low levels of additive genetic variance due to rapid fixation of alleles conferring highest fitness. Subsequent treatments have challenged this view by pointing out that high environmental and nonadditive genetic contributions to phenotypic variation may also explain the low heritability of fitness traits. Analysis of a large data set from the collared flycatcher Ficedula albicollis confirmed a previous finding that traits closely associated with fitness tend to have lower heritability. However, analysis of coefficients of additive genetic variation (CVA) revealed that traits closely associated with fitness had higher levels of additive genetic variation (VA) than traits more distantly associated with fitness. Hence, the negative relationship between a trait's association with fitness and its heritability was not due to lower levels of VA in fitness traits but was due to their higher residual variance. However, whether the high residual variance was mainly due to higher levels of environmental variance or due to higher levels of nonadditive genetic variance remains a challenge to be addressed by further studies. Our results are consistent with earlier suggestions that fitness-related traits may have more complex genetic architecture than traits more distantly associated with fitness.  相似文献   

9.
The genetic and ecological effects of population subdividsion were investigated for two wild strains of Tribolium castaneum and two wild strains of T. confusum and compared with the effects of population subdivision on the synthetic laboratory strain of T. castaneum (c-SM), used extensively in earlier experiments. For the c-SM strain, it has been shown repeatedly, for a variety of different population structures (different combinations of effective numbers, Ne, and migration rates, m), that large heritable differences in population growth rate arise among demes during 10 to 15 generations of population subdivision. Because this laboratory strain was synthesized by mass mating several “inbred” strains in 1973 (80 to 100 generations ago), it is possible that it has genetic variation for fitness (measured as the heritable variance among demes in the rate of population increase) unusually large compared to natural populations of flour beetles. In this paper, I report that natural populations of flour beetle exhibit as much or more phenotypic and genetic variation in the effects of population structure on fitness than the laboratory strain, c-SM. The observation of substantial heritable variation for fitness in natural populations is unexpected under additive theory and may be indicative of nonadditive genetic variance.  相似文献   

10.
Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous (mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures to overwinter. At the onset of the breeding season in the following spring, we found that offspring of polyandrous females performed significantly better at reproduction than those of monandrous females. This was mainly due to sons of polyandrous females producing significantly more offspring than those of monandrous females. No significant differences were found for offspring body mass or winter survival between the two treatments. Our results appear to provide evidence that bank vole females gain long-term benefits from polyandry.  相似文献   

11.
The possibility that sexual selection operates in angiosperms to effect evolutionary change in polygenic traits affecting male reproductive success requires that there is additive genetic variance for these traits. I applied a half-sib breeding design to individuals of the annual, hermaphroditic angiosperm, wild radish (Raphanus raphanistrum: Brassicaceae), to estimate paternal genetic effects on, or, when possible, the narrow-sense heritability of several quantitative traits influencing male reproductive success. In spite of significant differences among pollen donors with respect to in vitro pollen tube growth rates, I detected no significant additive genetic variance in male performance with respect to the proportion of ovules fertilized, early ovule growth, the number of seeds per fruit, or mean individual seed weight per fruit. In all cases, differences among maternal plants in these traits far exceeded differences among pollen donors. Abortion rates of pollinated flowers and fertilized ovules also differed more among individuals as maternal plants than as pollen donors, suggesting strong maternal control over these processes. Significant maternal phenotypic effects in the absence of paternal genetic or phenotypic effects on reproductive traits may be due to maternal environmental effects, to non-nuclear or non-additive maternal genetic effects, or to additive genetic variance in maternal control over offspring development, independent of offspring genotype. While I could not distinguish among these alternatives, it is clear that, in wild radish, the opportunity for natural or sexual selection to effect change in seed weight or seed number per fruit appears to be greater through differences in female performance than through differences in male performance.  相似文献   

12.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

13.
Pitcher TE  Neff BD 《Molecular ecology》2006,15(9):2357-2365
The genes of the major histocompatibility complex (MHC) are found in all vertebrates and are an important component of individual fitness through their role in disease and pathogen resistance. These genes are among the most polymorphic in genomes and the mechanism that maintains the diversity has been actively debated with arguments for natural selection centering on either additive or nonadditive genetic effects. Here, we use a quantitative genetics breeding design to examine the genetic effects of MHC class IIB alleles on offspring survivorship in Chinook salmon (Oncorhynchus tshawytscha). We develop a novel genetic algorithm that can be used to assign values to specific alleles or genotypes. We use this genetic algorithm to show simultaneous additive and nonadditive effects of specific MHC class IIB alleles and genotypes on offspring survivorship. The additive effect supports the rare-allele hypothesis as a potential mechanism for maintaining genetic diversity at the MHC. However, contrary to the overdominance hypothesis, the nonadditive effect led to underdominance at one heterozygous genotype, which could instead reduce variability at the MHC. Our algorithm is an advancement over traditional animal models that only partition variance in fitness to additive and nonadditive genetic effects, but do not allocate these effects to specific alleles and genotypes. Additionally, we found evidence of nonrandom segregation during meiosis in females that promotes an MHC allele that is associated with higher survivorship. Such nonrandom segregation could further reduce variability at the MHC and may explain why Chinook salmon has one of the lowest levels of MHC diversity of all vertebrates.  相似文献   

14.
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.  相似文献   

15.
Bottleneck Effects on Genetic Variance for Courtship Repertoire   总被引:1,自引:0,他引:1       下载免费PDF全文
L. M. Meffert 《Genetics》1995,139(1):365-374
Bottleneck effects on evolutionary potential in mating behavior were addressed through assays of additive genetic variances and resulting phenotypic responses to drift in the courtship repertoires of six two-pair founder-flush lines and two control populations of the housefly. A simulation addressed the complication that an estimate of the genetic variance for a courtship trait (e.g., male performance vigor or the female requirement for copulation) must involve assays against the background behavior of the mating partners. The additive ``environmental' effect of the mating partner's phenotype simply dilutes the net parent-offspring covariance for a trait. However, if there is an interaction with this ``environmental' component, negative parent-offspring covariances can result under conditions of high incompatibility between the population's distributions for male performance and female choice requirements, despite high levels of genetic variance. All six bottlenecked lines exhibited significant differentiation from the controls in at least one measure of the parent-offspring covariance for male performance or female choice (estimated by 50 parent-son and 50 parent-daughter covariances for 10 courtship traits per line) which translated to significant phenotypic drift. However, the average effect across traits or across lines did not yield a significant net increase in genetic variance due to bottlenecks. Concerted phenotypic differentiation due to the founder-flush event provided indirect evidence of directional dominance in a subset of traits. Furthermore, indirect evidence of genotype-environment interactions (potentially producing genotype-genotype effects) was found in the negative parent-offspring covariances predicted by the male-female interaction simulation and by the association of the magnitude of phenotypic drift with the absolute value of the parent-offspring covariance. Hence, nonadditive genetic effects on mating behavior may be important in structuring genetic variance for courtship, although most of the increases in genetic variance would be expected to reflect inbreeding depression with relatively rare situations representing the facilitation of speciation by bottlenecks.  相似文献   

16.
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward — females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term ‘good gene’ be used exclusively to refer to additive genetic variation in fitness, ‘compatible gene’ be used to refer to nonadditive genetic variation in fitness, and ‘genetic quality’ be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.  相似文献   

17.
When traits experience directional selection, such as that imposed by sexual selection, their genetic variance is expected to diminish. Nonetheless, theory and findings from sexual selection predict and demonstrate that male traits favored by female choice retain substantial amounts of additive genetic variance. We explored this dilemma through an ecological genetic approach and focused on the potential contributions of genotype x environment interaction (GEI) to maintenance of additive genetic variance for male signal characters in the lesser waxmoth, Achroia grisella (Lepidoptera: Pyralidae). We artificially selected genetic variants for two male signal characters, signal rate (SR) and peak amplitude (PA), that influence female attraction and then examined the phenotypic plasticity of these variants (high- and low-SR and high- and low-PA lines) under a range of environmental conditions expected in natural populations. Our split-family breeding experiments indicated that two signal characters, SR and PA, and several developmental characters in both high- and low-SR and high- and low-PA lines displayed considerable phenotypic plasticity among the environments tested. Moreover, strong GEIs leading to crossover between high- and low-SR lines were found for SR and developmental period. Therefore, neither high- nor low-SR genetic variants would achieve maximum attractiveness and fitness in every environment, and those variants producing unattractive signals with low SRs under normal conditions may remain in populations provided that gene flow across environments or generation overlap are sufficiently high. We speculate that the phenotypic plasticity for SR and developmental period is adaptive in A. grisella populations experiencing a range of temperature and density conditions. Females mating with attractive (high-SR) males may be assured of obtaining good genes because these males sire offspring that develop more rapidly and a crossover for developmental period may parallel that for SR. Such parallel crossovers may be expected wherever good-genes sexual selection mechanisms operate.  相似文献   

18.
Context-dependent genetic benefits of polyandry in a marine hermaphrodite   总被引:1,自引:0,他引:1  
Numerous studies emphasize the potential indirect (genetic) benefits of polyandry in animals with resource-free mating systems. In this paper, we examine the potential for these benefits to fuel sexual selection and polyandry in the hermaphroditic ascidian Pyura stolonifera. Individuals were designated either sire (sperm producers) or dam (egg producers) at random and crossed in a North Carolina II breeding design to produce both paternal and maternal half siblings for our quantitative genetic analysis. We then partitioned the phenotypic variance in fertilization and hatching rates into additive and non-additive variance components. We found significant additive variance attributable to sire and dam effects at fertilization and hatching, suggesting the potential for selection to favour individuals carrying intrinsically 'good genes' for these traits. In separate analyses involving monandrous and polyandrous clutches, we found that both traits were elevated under polyandry, but the difference in hatching rates was due entirely to the difference in fertilization rates between treatments. When the hatching rates were standardized to account for variance at fertilization, there was no overall net benefit of polyandry for this trait. Despite this, we found that hatching success declined with increasing embryo densities, and that the slope of this decline was significantly greater in monandrous than polyandrous clutches. Hence, selection on embryo viability may still favour polyandry under restricted environmental conditions. Nevertheless, our results caution against interpreting elevated hatching success as an indirect genetic benefit of polyandry when variance in fertilization is not controlled.  相似文献   

19.
Accurately estimating genetic variance components is important for studying evolution in the wild. Empirical work on domesticated and wild outbred populations suggests that dominance genetic variance represents a substantial part of genetic variance, and theoretical work predicts that ignoring dominance can inflate estimates of additive genetic variance. Whether this issue is pervasive in natural systems is unknown, because we lack estimates of dominance variance in wild populations obtained in situ. Here, we estimate dominance and additive genetic variance, maternal variance, and other sources of nongenetic variance in eight traits measured in over 9000 wild nestlings linked through a genetically resolved pedigree. We find that dominance variance, when estimable, does not statistically differ from zero and represents a modest amount (2-36%) of genetic variance. Simulations show that (1) inferences of all variance components for an average trait are unbiased; (2) the power to detect dominance variance is low; (3) ignoring dominance can mildly inflate additive genetic variance and heritability estimates but such inflation becomes substantial when maternal effects are also ignored. These findings hence suggest that dominance is a small source of phenotypic variance in the wild and highlight the importance of proper model construction for accurately estimating evolutionary potential.  相似文献   

20.
Floral traits endowing high reproductive fitness can also affect the probability of plants contracting sexually transmitted diseases. We explore how variations in floral traits influence the fitness of Silene dioica females in their interactions with pollinators carrying pollen or spores of the sterilizing anther-smut fungus Microbotryum violaceum. We collected healthy and infected plants in a highly diseased population and grew them under conditions that 'cure' infected individuals, and used standard regression methods to detect natural selection on floral traits. Narrow-sense heritabilities, coefficients of additive genetic variation (CV(A)) and genetic correlations among traits were estimated from paternal half-sib groups. Pollinator preferences imposed strong direct and directional selection on traits affecting female attractiveness and pollen-/spore-capturing abilities. Levels of additive genetic variance were high in these traits, suggesting that rapid responses to selection are possible. By considering our results in the light of spatial and temporal heterogeneity resulting from the colonization dynamics typical for this species, we suggest that the conflicting selective effects of pollen/spore loads lead to the maintenance of genetic variation in these traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号