首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PBY1 continues to be linked with DNA repair through functional genomics studies in yeast. Using the yeast knockout (YKO) strain collection, high-throughput genetic interaction screens have identified a large set of negative interactions between PBY1 and genes involved in genome stability. In drug sensitivity screens, the YKO collection pby1Δ strain exhibits a sensitivity profile typical for genes involved in DNA replication and repair. We show that these findings are not related to loss of Pby1. On the basis of genetic interaction profile similarity, we pinpoint disruption of Holliday junction resolvase Mus81-Mms4 as the mutation responsible for DNA repair phenotypes currently ascribed to pby1. The finding that Pby1 is not a DNA repair factor reconciles discrepancies in the data available for PBY1, and indirectly supports a role for Pby1 in mRNA metabolism. Data that has been collected using the YKO collection pby1Δ strain confirms and expands the chemical-genetic interactome of MUS81-MMS4.  相似文献   

2.
Functional studies strongly suggest that the Mus81-Eme1 complex resolves Holliday junctions (HJs) in fission yeast, but in vitro it preferentially cleaves flexible three-way branched structures that model replication forks or 3' flaps. Here we report that a nicked HJ is the preferred substrate of endogenous and recombinant Mus81-Eme1. Cleavage occurs specifically on the strand that opposes the nick, resulting in resolution of the structure into linear duplex products. Resolving cuts made by the endogenous Mus81-Eme1 complex on an intact HJ are quasi-simultaneous, indicating that Mus81-Eme1 resolves HJs by a nick and counternick mechanism, with a large rate enhancement of the second cut arising from the flexible nature of the nicked HJ intermediate. Recombinant Mus81-Eme1 is ineffective at making the first cut. We also report that HJs accumulate in a DNA polymerase alpha mutant that lacks Mus81, providing further evidence that the Mus81-Eme1 complex targets HJs in vivo.  相似文献   

3.
Smith GR  Boddy MN  Shanahan P  Russell P 《Genetics》2003,165(4):2289-2293
Most models of homologous recombination invoke cleavage of Holliday junctions to explain crossing over. The Mus81.Eme1 endonuclease from fission yeast and humans cleaves Holliday junctions and other branched DNA structures, leaving its physiological substrate uncertain. We report here that Schizosaccharomyces pombe mus81 mutants have normal or elevated frequencies of gene conversion but 20- to 100-fold reduced frequencies of crossing over. Thus, gene conversion and crossing over can be genetically separated, and Mus81 is required for crossing over, supporting the hypothesis that the fission yeast Mus81.Eme1 protein complex resolves Holliday junctions in meiotic cells.  相似文献   

4.
Osman F  Dixon J  Doe CL  Whitby MC 《Molecular cell》2003,12(3):761-774
The double Holliday junction (dHJ) is generally regarded to be a key intermediate of meiotic recombination, whose resolution is critical for the formation of crossover recombinants. In fission yeast, the Mus81-Eme1 endonuclease has been implicated in resolving dHJs. Consistent with this role, we show that Mus81-Eme1 is required for generating meiotic crossovers. However, purified Mus81-Eme1 prefers to cleave junctions that mimic those formed during the transition from double-strand break to dHJ. Crucially, these junctions are cleaved by Mus81-Eme1 in precisely the right orientation to guarantee the formation of a crossover every time. These data demonstrate how crossovers could arise without forming or resolving dHJs using an enzyme that is widely conserved amongst eukaryotes.  相似文献   

5.
The XPF/MUS81 family of endonucleases is found in eukaryotes and archaea, in the former they play a critical role in DNA repair and replication fork restart. Hef is a XPF/MUS81 family member found in Euryarchaea and is related to the Fanconi anemia protein FANCM. We have studied the role of Hef in the euryarchaeon Haloferax volcanii. Unlike Xpf in eukaryotes, Hef is not involved in nucleotide excision repair; instead, this function is encoded by the uvrABC genes. Similarly, deletion of hef confers only moderate sensitivity to DNA crosslinking agents, whereas mutation of FANCM in leads to hypersensitivity in eukaryotes. However, Hef is essential for cell viability when the Holliday junction resolvase Hjc is absent, and both the helicase and nuclease activities of Hef are indispensable. By contrast, single mutants of hjc and hef display no significant defects in growth or homologous recombination. This suggests that Hef and Hjc are redundant for the resolution of recombination intermediates, and that Hef is the functional homolog of eukaryotic Mus81. Furthermore, deletion of hef in a recombination-deficient ΔradA background is highly deleterious but deletion of hjc has no effect. Therefore, Hjc acts exclusively in homologous recombination whereas Hef, in addition to its role in resolving recombination intermediates, can act in a pathway that avoids the use of homologous recombination. We propose that Hef and Hjc provide alternative means to restart stalled DNA replication forks.  相似文献   

6.
A key step in meiotic recombination involves the nucleolytic resolution of Holliday junctions to generate crossovers. Although the enzyme that performs this function in human cells is presently unknown, recent studies led to the identification of the XPG-family endonuclease GEN1 that promotes Holliday junction resolution in vitro, suggesting that it may perform a related function in vivo. Here, we show that ectopic expression of GEN1 in fission yeast mus81Δ strains results in Holliday junction resolution and crossover formation during meiosis.  相似文献   

7.
Activation of RuvC Holliday junction resolvase in vitro.   总被引:6,自引:0,他引:6       下载免费PDF全文
R Shah  R J Bennett    S C West 《Nucleic acids research》1994,22(13):2490-2497
The Escherichia coli RuvC protein is an endonuclease that resolves Holliday junctions. In vitro, the protein shows efficient structure-specific binding of Holliday junctions, yet the rate of junction resolution is remarkably low. We have mapped the sites of cleavage on a synthetic junction through which a crossover can branch migrate through 26 bp and find that > or = 90% of the junctions were cleaved at one site. This observation of sequence-specific cleavage suggests that inefficient resolution may be due to DNA binding events which occur away from the cleavage site and are therefore non-productive. Holliday junction resolution by RuvC protein can be stimulated by a number of factors including: (i) the presence of Mn2+ (rather than Mg2+) as the divalent metal cofactor, (ii) alkaline pH (< or = 10), and (iii) elevated temperature. These observations may indicate that other proteins are required for efficient RuvC-mediated resolution.  相似文献   

8.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.  相似文献   

9.
Yen1 and GEN1 are members of the Rad2/XPG family of nucleases that were identified as the first canonical nuclear Holliday junction (HJ) resolvases in budding yeast and humans due to their ability to introduce two symmetric, coordinated incisions on opposite strands of the HJ, yielding nicked DNA products that could be readily ligated. While GEN1 has been extensively characterized in vitro, much less is known about the biochemistry of Yen1. Here, we have performed the first in-depth characterization of purified Yen1. We confirmed that Yen1 resembles GEN1 in many aspects, including range of substrates targeted, position of most incisions they produce or the increase in the first incision rate by assembly of a dimer on a HJ, despite minor differences. However, we demonstrate that Yen1 is endowed with additional nuclease activities, like a nick-specific 5′-3′ exonuclease or HJ arm-chopping that could apparently blur its classification as a canonical HJ resolvase. Despite this, we show that Yen1 fulfils the requirements of a canonical HJ resolvase and hypothesize that its wider array of nuclease activities might contribute to its function in the removal of persistent recombination or replication intermediates.  相似文献   

10.
The Bacillus subtilis RecU protein has two activities: to recognize, distort, and cleave four-stranded recombination intermediates and to modulate RecA activities. The RecU structure shows a mushroom-like appearance, with a cap and a stalk region. The RuvB interaction and the catalytic residues are located in the cap region of dimeric RecU. We report here that the stalk region is essential not only for RecA modulation but also for Holliday junction (HJ) recognition. Two recU mutants, which map in the stalk region, were isolated and characterized. In vivo, a RecU variant with a Phe81-to-Ala substitution (F81A) was as sensitive to DNA-damaging agents as a null recU strain, and a similar substitution at tyrosine 80 (Y80A) showed an intermediate phenotype. RecUY80A and RecUF81A poorly recognize and distort HJs. RecUY80A cleaves HJs with low efficiency, and RuvB modulates cleavage. At high concentrations, RecUF81A binds to HJs but fails to cleave them. Unlike wild-type RecU, RecUY80A and RecUF81A do not inhibit RecA dATPase and strand-exchange activities. The RecU stalk region is involved in RecA interaction, but once an HJ is bound, RecU fails to modulate RecA activities. Our biochemical study provides a mechanistic basis for the connections between these two mutually exclusive stages (i.e., RecA modulation and HJ resolution) of the recombination reaction.  相似文献   

11.
Correct replication of the genome and protection of its integrity are essential for cell survival. In a high-throughput screen studying H2AX phosphorylation, we identified Wee1 as a regulator of genomic stability. Wee1 down-regulation not only induced H2AX phosphorylation but also triggered a general deoxyribonucleic acid (DNA) damage response (DDR) and caused a block in DNA replication, resulting in accumulation of cells in S phase. Wee1-deficient cells showed a decrease in replication fork speed, demonstrating the involvement of Wee1 in DNA replication. Inhibiting Wee1 in cells treated with short treatment of hydroxyurea enhanced the DDR, which suggests that Wee1 specifically protects the stability of stalled replication forks. Notably, the DDR induced by depletion of Wee1 critically depends on the Mus81-Eme1 endonuclease, and we found that codepletion of Mus81 and Wee1 abrogated the S phase delay. Importantly, Wee1 and Mus81 interact in vivo, suggesting direct regulation. Altogether, these results demonstrate a novel role of Wee1 in controlling Mus81 and DNA replication in human cells.  相似文献   

12.
The study of genes and proteins in heterologous model systems provides a powerful approach to the analysis of common processes in biology. Here, we show how the bacterium Escherichia coli can be exploited to analyse genetically and biochemically the activity and function of a Holliday junction resolving enzyme from an archaeal species. We have purified and characterised a member of the newly discovered Holliday junction cleaving (Hjc) family of resolvases from the moderately thermophilic archaeon Methanobacterium thermoautotrophicum and demonstrate that it promotes DNA repair in resolvase-deficient ruv mutants of E. coli. The data presented provide the first direct evidence that such archaeal enzymes can promote DNA repair in vivo, and support the view that formation and resolution of Holliday junctions are key to the interplay between DNA replication, recombination and repair in all organisms. We also show that Hjc promotes DNA repair in E. coli in a manner that requires the presence of the RecG branch migration protein. These results support models in which RecG acts at a replication fork stalled at a lesion in the DNA, catalysing fork regression and forming a Holliday junction that can then be acted upon by Hjc.  相似文献   

13.
The processing of stalled replication forks and the repair of collapsed replication forks are essential functions in all organisms. In fission yeast DNA junctions at stalled replication forks appear to be processed by either the Rqh1 DNA helicase or Mus81-Eme1 endonuclease. Accordingly, we show that the hypersensitivity to agents that cause replication fork stalling of mus81, eme1, and rqh1 mutants is suppressed by a Holliday junction resolvase (RusA), as is the synthetic lethality of a mus81(-) rqh1(-) double mutant. Recombinant Mus81-Eme1, purified from Escherichia coli, readily cleaves replication fork structures but cleaves synthetic Holliday junctions relatively poorly in vitro. From these data we propose that Mus81-Eme1 can process stalled replication forks before they have regressed to form a Holliday junction. We also implicate Mus81-Eme1 and Rqh1 in the repair of collapsed replication forks. Here Mus81-Eme1 and Rqh1 seem to function on different substrates because RusA can substitute for Mus81-Eme1 but not Rqh1.  相似文献   

14.
Human Mus81-associated endonuclease cleaves Holliday junctions in vitro.   总被引:1,自引:0,他引:1  
Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.  相似文献   

15.
Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks   总被引:5,自引:0,他引:5  
Osman F  Whitby MC 《DNA Repair》2007,6(7):1004-1017
Cells of all living organisms have evolved complex mechanisms that serve to stabilise, repair and restart stalled, blocked and broken replication forks. The heterodimeric Mus81-Eme1/Mms4 structure-specific endonuclease appears to play an important role(s) in homologous recombination-mediated processing of such perturbed forks. This enzyme has been implicated in the cleavage of stalled and blocked replication forks to initiate recombination, as well as in the processing of recombination intermediates that result from repairing damaged forks. In this review we assess the biochemical and genetic evidence for the mitotic role of Mus81-Eme1/Mms4 at replication forks and in repairing post-replication DNA damage. Mus81 appears to act when replication is impeded by genotoxins or by impairment of the replication machinery, or when arrested replication forks are not adequately protected. We discuss how its action is regulated by the S-phase cell cycle checkpoint, depending on the nature of the stalled or damaged fork. We also present a new way in which Mus81 may limit crossing over during the repair of post-replication gaps, and explore Mus81's interplay with other components of the recombination machinery, including the RecQ helicases that also play important roles in processing replication and recombination intermediates.  相似文献   

16.
SpCCE1 (YDC2) from Schizosaccharomyces pombe is a DNA structure-specific endonuclease that resolves Holliday junctions in vitro. To investigate the in vivo function of SpCCE1 we made an Spcce1::ura4 + insertion mutant strain. This strain is viable and, despite being devoid of the Holliday junction resolvase activity that is readily detected in fractionated extracts from wild-type cells, exhibits normal levels of UV sensitivity and spontaneous or UV-induced mitotic recombination. In accordance with the absence of a nuclear phenotype, we show by fluorescence microscopy that a SpCCE1-GFP fusion localises exclusively to the mitochondria of S. pombe. In Saccharomyces cerevisiae the homologue of SpCCE1, CCE1, is known to function in the mitochondria where its role appears to be to remove recombination junctions and thus facilitate mitochondrial DNA segregation. A similar function can probably be attributed to SpCCE1 in S. pombe, since the majority of mitochondrial DNA from the Spcce1::ura4 + strain is in an aggregated form apparently due to extensive interlinking of DNA molecules by recombination junctions. Surprisingly, this marked effect on the conformation of mitochondrial DNA results in little or no effect on proliferation or viability of the Spcce1::ura4 + strain. Possible explanations are discussed. Received: 28 October 1999 / Accepted: 28 March 2000  相似文献   

17.
The conserved heterodimeric endonuclease Mus81-Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81-Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after bulk DNA synthesis and before chromosome segregation, and is absolutely necessary for the function of the Mus81-Mms4 complex. Consistently, a phosphorylation-defective mms4 mutant shows highly reduced nuclease activity and increases the sensitivity of cells lacking the RecQ-helicase Sgs1 to various agents that cause DNA damage or replicative stress. The mode of regulation of Mus81-Mms4 restricts its activity to a short period of the cell cycle, thus preventing its function during chromosome replication and the negative consequences for genome stability derived from its nucleolytic action. Yet, the controlled Mus81-Mms4 activity provides a safeguard mechanism to resolve DNA intermediates that may remain after replication and require processing before mitosis.  相似文献   

18.
Resolution of Holliday junctions into separate DNA duplexes requires enzymatic cleavage of an equivalent strand from each contributing duplex at or close to the point of strand exchange. Diverse Holliday junction-resolving enzymes have been identified in bacteria, bacteriophages, archaea and pox viruses, but the only eukaryotic examples identified so far are those from fungal mitochondria. We have now determined the crystal structure of Ydc2 (also known as SpCce1), a Holliday junction resolvase from the fission yeast Schizosaccharomyces pombe that is involved in the maintenance of mitochondrial DNA. This first structure of a eukaryotic Holliday junction resolvase confirms a distant evolutionary relationship to the bacterial RuvC family, but reveals structural features which are unique to the eukaryotic enzymes. Detailed analysis of the dimeric structure suggests mechanisms for junction isomerization and communication between the two active sites, and together with site-directed mutagenesis identifies residues involved in catalysis.  相似文献   

19.
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号