首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.  相似文献   

2.
Nair R  Rost B 《Nucleic acids research》2003,31(13):3337-3340
LOC3D (http://cubic.bioc.columbia.edu/db/LOC3d/) is both a weekly-updated database and a web server for predictions of sub-cellular localization for eukaryotic proteins of known three-dimensional (3D) structure. Localization is predicted using four different methods: (i) PredictNLS, prediction of nuclear proteins through nuclear localization signals; (ii) LOChom, inferring localization through sequence homology; (iii) LOCkey, inferring localization through automatic text analysis of SWISS-PROT keywords; and (iv) LOC3Dini, ab initio prediction through a system of neural networks and vector support machines. The final prediction is based on the method that predicts localization with the highest confidence. The LOC3D database currently contains predictions for >8700 eukaryotic protein chains taken from the Protein Data Bank (PDB). The web server can be used to predict sub-cellular localization for proteins for which only a predicted structure is available from threading servers. This makes the resource of particular interest to structural genomics initiatives.  相似文献   

3.
The META-PP server (http://cubic.bioc.columbia.edu/meta/) simplifies access to a battery of public protein structure and function prediction servers by providing a common and stable web-based interface. The goal is to make these powerful and increasingly essential methods more readily available to nonexpert users and the bioinformatics community at large. At present META-PP provides access to a selected set of high-quality servers in the areas of comparative modelling, threading/fold recognition, secondary structure prediction and more specialized fields like contact and function prediction.  相似文献   

4.
Prediction of trans-membrane helices continues to be a difficult task with a few prediction methods clearly taking the lead; none of these is clearly best on all accounts. Recently, we have carefully set up protocols for benchmarking the most relevant aspects of prediction accuracy and have applied it to >30 prediction methods. Here, we present the extension of that analysis to the level of an automatic web server evaluating new methods (http://cubic.bioc.columbia.edu/services/tmh_benchmark/). The most important achievements of the tool are: (i) any new method is compared to the battery of well-established tools; (ii) the battery of measures explored allows spotting strengths in methods that may not be 'best' overall. In particular, we report per-residue and per-segment scores for accuracy and the error-rates for confusing membrane helices with globular proteins or signal peptides. An additional feature is that developers can directly investigate any hydrophobicity scale for its potential in predicting membrane helices.  相似文献   

5.
Mika S  Rost B 《Nucleic acids research》2003,31(13):3789-3791
UniqueProt is a practical and easy to use web service designed to create representative, unbiased data sets of protein sequences. The largest possible representative sets are found through a simple greedy algorithm using the HSSP-value to establish sequence similarity. UniqueProt is not a real clustering program in the sense that the 'representatives' are not at the centres of well-defined clusters since the definition of such clusters is problem-specific. Overall, UniqueProt is a reasonable fast solution for bias in data sets. The service is accessible at http://cubic.bioc.columbia.edu/services/uniqueprot; a command-line version for Linux is downloadable from this web site.  相似文献   

6.
The PredictProtein server   总被引:6,自引:0,他引:6       下载免费PDF全文
Rost B  Liu J 《Nucleic acids research》2003,31(13):3300-3304
PredictProtein (PP, http://cubic.bioc.columbia.edu/pp/) is an internet service for sequence analysis and the prediction of aspects of protein structure and function. Users submit protein sequence or alignments; the server returns a multiple sequence alignment, PROSITE sequence motifs, low-complexity regions (SEG), ProDom domain assignments, nuclear localisation signals, regions lacking regular structure and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions and disulfide-bonds. Upon request, fold recognition by prediction-based threading is available. For all services, users can submit their query either by electronic mail or interactively from World Wide Web.  相似文献   

7.
We offer a tool, denoted VISTAL, for two-dimensional visualization of protein structural alignments. VISTAL describes aligned structures as a series of matched secondary structure elements, colored according to the three-dimensional distance of their Calpha atoms. AVAILABILITY: VISTAL can be downloaded from http://trantor.bioc.columbia.edu/~kolodny/software.html.  相似文献   

8.
Protein backbone angle prediction with machine learning approaches   总被引:2,自引:0,他引:2  
MOTIVATION: Protein backbone torsion angle prediction provides useful local structural information that goes beyond conventional three-state (alpha, beta and coil) secondary structure predictions. Accurate prediction of protein backbone torsion angles will substantially improve modeling procedures for local structures of protein sequence segments, especially in modeling loop conformations that do not form regular structures as in alpha-helices or beta-strands. RESULTS: We have devised two novel automated methods in protein backbone conformational state prediction: one method is based on support vector machines (SVMs); the other method combines a standard feed-forward back-propagation artificial neural network (NN) with a local structure-based sequence profile database (LSBSP1). Extensive benchmark experiments demonstrate that both methods have improved the prediction accuracy rate over the previously published methods for conformation state prediction when using an alphabet of three or four states. AVAILABILITY: LSBSP1 and the NN algorithm have been implemented in PrISM.1, which is available from www.columbia.edu/~ay1/. SUPPLEMENTARY INFORMATION: Supplementary data for the SVM method can be downloaded from the Website www.cs.columbia.edu/compbio/backbone.  相似文献   

9.
NORSp: Predictions of long regions without regular secondary structure   总被引:1,自引:0,他引:1  
Liu J  Rost B 《Nucleic acids research》2003,31(13):3833-3835
Many structurally flexible regions play important roles in biological processes. It has been shown that extended loopy regions are very abundant in the protein universe and that they have been conserved through evolution. Here, we present NORSp, a publicly available predictor for disordered regions in protein. Specifically, NORSp predicts long regions with NO Regular Secondary structure. Upon user submission of a protein sequence, NORSp will analyse the protein for its secondary structure, presence of transmembrane helices and coiled-coil. It will then return email to the user about the presence and position of disordered regions. NORSp can be accessed from http://cubic.bioc.columbia.edu/services/NORSp/.  相似文献   

10.
Prediction of DNA-binding residues from sequence   总被引:2,自引:0,他引:2  
MOTIVATION: Thousands of proteins are known to bind to DNA; for most of them the mechanism of action and the residues that bind to DNA, i.e. the binding sites, are yet unknown. Experimental identification of binding sites requires expensive and laborious methods such as mutagenesis and binding essays. Hence, such studies are not applicable on a large scale. If the 3D structure of a protein is known, it is often possible to predict DNA-binding sites in silico. However, for most proteins, such knowledge is not available. RESULTS: It has been shown that DNA-binding residues have distinct biophysical characteristics. Here we demonstrate that these characteristics are so distinct that they enable accurate prediction of the residues that bind DNA directly from amino acid sequence, without requiring any additional experimental or structural information. In a cross-validation based on the largest non-redundant dataset of high-resolution protein-DNA complexes available today, we found that 89% of our predictions are confirmed by experimental data. Thus, it is now possible to identify DNA-binding sites on a proteomic scale even in the absence of any experimental data or 3D-structural information. AVAILABILITY: http://cubic.bioc.columbia.edu/services/disis.  相似文献   

11.
12.
NLSdb is a database of nuclear localization signals (NLSs) and of nuclear proteins. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using 'in silico mutagenesis' this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. NLSdb can be accessed via the web site: http://cubic.bioc.columbia.edu/db/NLSdb/.  相似文献   

13.
Nair R  Rost B 《Proteins》2003,53(4):917-930
The native sub-cellular compartment of a protein is one aspect of its function. Thus, predicting localization is an important step toward predicting function. Short zip code-like sequence fragments regulate some of the shuttling between compartments. Cataloguing and predicting such motifs is the most accurate means of determining localization in silico. However, only few motifs are currently known, and not all the trafficking appears regulated in this way. The amino acid composition of a protein correlates with its localization. All general prediction methods employed this observation. Here, we explored the evolutionary information contained in multiple alignments and aspects of protein structure to predict localization in absence of homology and targeting motifs. Our final system combined statistical rules and a variety of neural networks to achieve an overall four-state accuracy above 65%, a significant improvement over systems using only composition. The system was at its best for extra-cellular and nuclear proteins; it was significantly less accurate than TargetP for mitochondrial proteins. Interestingly, all methods that were developed on SWISS-PROT sequences failed grossly when fed with sequences from proteins of known structures taken from PDB. We therefore developed two separate systems: one for proteins of known structure and one for proteins of unknown structure. Finally, we applied the PDB-based system along with homology-based inferences and automatic text analysis to annotate all eukaryotic proteins in the PDB (http://cubic.bioc.columbia.edu/db/LOC3D). We imagine that this pilot method-certainly in combination with similar tools-may be valuable target selection in structural genomics.  相似文献   

14.
The DSSP program automatically assigns the secondary structure for each residue from the three-dimensional co-ordinates of a protein structure to one of eight states. However, discrete assignments are incomplete in that they cannot capture the continuum of thermal fluctuations. Therefore, DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont) introduces a continuous assignment of secondary structure that replaces 'static' by 'dynamic' states. Technically, the continuum results from calculating weighted averages over 10 discrete DSSP assignments with different hydrogen bond thresholds. A DSSPcont assignment for a particular residue is a percentage likelihood of eight secondary structure states, derived from a weighted average of the ten DSSP assignments. The continuous assignments have two important features: (i) they reflect the structural variations due to thermal fluctuations as detected by NMR spectroscopy; and (ii) they reproduce the structural variation between many NMR models from one single model. Therefore, functionally important variation can be extracted from a single X-ray structure using the continuous assignment procedure.  相似文献   

15.
PEP is a database of Predictions for Entire Proteomes. The database contains summaries of analyses of protein sequences from a range of organisms representing all three major kingdoms of life: eukaryotes, prokaryotes and archaea. All proteins publicly available for organisms were aligned against SWISS-PROT, TrEMBL and PDB. Additionally, the following annotations are provided: secondary structure, transmembrane helices, coiled coils, regions of low complexity, signal peptides, PROSITE motifs, nuclear localization signals and classes of cellular function. Proteins that contain long regions without regular secondary structure are also identified. We have produced a related database of structural domain-like fragments derived from PEP and clusters based on homology between all fragments. The PEP database, fragments and clusters are distributed freely as a set of flat files and have been integrated into SRS. The PEP group of databases can be accessed from: http://cubic.bioc.columbia.edu/pep.  相似文献   

16.
STING Millennium Suite (SMS) is a new web-based suite of programs and databases providing visualization and a complex analysis of molecular sequence and structure for the data deposited at the Protein Data Bank (PDB). SMS operates with a collection of both publicly available data (PDB, HSSP, Prosite) and its own data (contacts, interface contacts, surface accessibility). Biologists find SMS useful because it provides a variety of algorithms and validated data, wrapped-up in a user friendly web interface. Using SMS it is now possible to analyze sequence to structure relationships, the quality of the structure, nature and volume of atomic contacts of intra and inter chain type, relative conservation of amino acids at the specific sequence position based on multiple sequence alignment, indications of folding essential residue (FER) based on the relationship of the residue conservation to the intra-chain contacts and Calpha-Calpha and Cbeta-Cbeta distance geometry. Specific emphasis in SMS is given to interface forming residues (IFR)-amino acids that define the interactive portion of the protein surfaces. SMS may simultaneously display and analyze previously superimposed structures. PDB updates trigger SMS updates in a synchronized fashion. SMS is freely accessible for public data at http://www.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS and http://trantor.bioc.columbia.edu/SMS.  相似文献   

17.
Secondary structure predictions are increasingly becoming the workhorse for several methods aiming at predicting protein structure and function. Here we use ensembles of bidirectional recurrent neural network architectures, PSI-BLAST-derived profiles, and a large nonredundant training set to derive two new predictors: (a) the second version of the SSpro program for secondary structure classification into three categories and (b) the first version of the SSpro8 program for secondary structure classification into the eight classes produced by the DSSP program. We describe the results of three different test sets on which SSpro achieved a sustained performance of about 78% correct prediction. We report confusion matrices, compare PSI-BLAST to BLAST-derived profiles, and assess the corresponding performance improvements. SSpro and SSpro8 are implemented as web servers, available together with other structural feature predictors at: http://promoter.ics.uci.edu/BRNN-PRED/.  相似文献   

18.
MOTIVATION: A large body of experimental and theoretical evidence suggests that local structural determinants are frequently encoded in short segments of protein sequence. Although the local structural information, once recognized, is particularly useful in protein structural and functional analyses, it remains a difficult problem to identify embedded local structural codes based solely on sequence information. RESULTS: In this paper, we describe a local structure prediction method aiming at predicting the backbone structures of nine-residue sequence segments. Two elements are the keys for this local structure prediction procedure. The first key element is the LSBSP1 database, which contains a large number of non-redundant local structure-based sequence profiles for nine-residue structure segments. The second key element is the consensus approach, which identifies a consensus structure from a set of hit structures. The local structure prediction procedure starts by matching a query sequence segment of nine consecutive amino acid residues to all the sequence profiles in the local structure-based sequence profile database (LSBSP1). The consensus structure, which is at the center of the largest structural cluster of the hit structures, is predicted to be the native state structure adopted by the query sequence segment. This local structure prediction method is assessed with a large set of random test protein structures that have not been used in constructing the LSBSP1 database. The benchmark results indicate that the prediction capacities of the novel local structure prediction procedure exceed the prediction capacities of the local backbone structure prediction methods based on the I-sites library by a significant margin. AVAILABILITY: All the computational and assessment procedures have been implemented in the integrated computational system PrISM.1 (Protein Informatics System for Modeling). The system and associated databases for LINUX systems can be downloaded from the website: http://www.columbia.edu/~ay1/.  相似文献   

19.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

20.
SUMMARY: A web-based application to analyze protein amino acids conservation-Consensus Sequence (ConSSeq) is presented. ConSSeq graphically represents information about amino acid conservation based on sequence alignments reported in homology-derived structures of proteins. Beyond the relative entropy for each position in the alignment, ConSSeq also presents the consensus sequence and information about the amino acids, which are predominant at each position of the alignment. ConSSeq is part of the STING Millennium Suite and is implemented as a Java Applet. AVAILABILITY: http://sms.cbi.cnptia.embrapa.br/SMS/STINGm/consseq/, http://trantor.bioc.columbia.edu/SMS/STINGm/consseq/, http://mirrors.rcsb.org//SMS/STINGm/consseq/, http://www.es.embnet.org/SMS/STINGm/consseq/ and http://www.ar.embnet.org/SMS/STINGm/consseq/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号