首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

2.
A rapid and sensitive method for the assay of zonisamide in serum was developed using a solid-phase extraction technique followed by high-performance liquid chromatography. A 20-μl volume of human serum was first purified with a Bond-Elut cartridge column. Then, the methanol eluate was injected onto a reversed-phase HPLC column with a UV detector. The mobile phase was acetonitrile—methanol—distilled water (17:20:63, v/v) and the detection wavelength was 246 nm. The detection limit was 0.1 μg/ml in serum. The coefficients of variation were 4.2–5.6% and 5.1–9.1% for the within-day and between-day assays, respectively. This method can be used for clinical pharmacokinetic studies of zonisamide in serum even in infant patients with epilepsy.  相似文献   

3.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

4.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

5.
An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in human plasma. Methocarbamol and internal standard in 200 μl of human plasma were extracted with ethyl acetate, evaporated to dryness and reconstituted in water. Separation was achieved on a reversed-phase C18 column with a mobile phase of methanol—0.1 M potassium phosphate monobasic—water (35:10:55, v/v/v). The detection was by ultraviolet at 272 nm. Linearity was established at 1–100 μg/ml (r > 0.999). The limit of quantitation was designed as 1 μg/ml to suit pharmacokinetic studies. Inter-day precision and accuracy of the calibration standards were 1.0 to 3.6% coefficients of variance (C.V.) and −2.0 to +1.6% relative error (R.E.). Quality controls of 3, 20 and 70 μg/ml showed inter-day precision and accuracy of 2.5 to 3.6% C.V. and −0.9 to −0.4% R.E. Recovery of methocarbamol was 91.4–100.3% in five different lots of plasma. The method was shown to be applicable on different brands of C18 columns.  相似文献   

6.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

7.
A highly sensitive method for the determination of cholesterol in biological fluids is described. Unsaponifiable lipids from rat serum and thoracic duct lymph chylomicron samples were treated with cholesterol oxidase. The product of the enzymatic reaction, Δ4-cholestenone, was analysed by normal-phase high-performance liquid chromatography (HPLC) using hexane—isopropanol (95:5, v/v) as a mobile phase and detected with a UV spectrophotometer at 240 nm. When the standard samples containing varying amounts of cholesterol (0.15–3 nmol) were treated with cholesterol oxidase and analysed by HPLC (injected amounts 0.09–1.8 nmol of cholesterol), the peak areas increased proportionally with the amounts of authentic cholesterol with a correlation coefficient of 0.996. The values in these biological fluids determined by the HPLC method were identical to those obtained by enzymatic—colorimetric or gas chromatographic methods. Moreover, the detection limit (0.09 nmol) of the present method (0.15 nmol are required for the sample preparation) is lower than those of conventional methods (approximately 30 nmol). Because of the excellent sensitivity and reproducibility, this method is well suited for the determination of cholesterol in biological fluids where cholesterol concentration is low.  相似文献   

8.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

9.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

10.
A rapid and simple method for determination of the novel antiepileptic compound gabapentin [1-(aminomethyl)cyclohexaneacetic acid] in plasma is described. Blank human plasma was spiked with gabapentin (1.0–10.0 μg/ml) and internal standard [1-(aminomethyl)-cycloheptaneacetic acid; 5.0 μg/ml]. Individual samples were treated with 2 M perchloric acid, centrifuged and then derivatised with o-phthalaldehyde-3-mercaptopropionic acid. Separation was achieved on a Beckman Ultrasphere 5 μm reversed-phase column with mobile phase consisting of 0.33 M acetate buffer (pH 3.7; containing 100 mg/l EDTA)-methanol-acetonitrile (40:30:30, v/v). Eluents were monitored by fluorescence spectroscopy with excitation and emission wavelengths of 330 and 440 nm, respectively. The calibration curve for gabapentin in plasma was linear (r=0.9997) over the concentration range 1.0–10.0 μg/ml. Recovery was seen to be 90%. The inter- and intra-assay variations for three different gabapentin concentrations were 10% throughout. The lower limit of quantitation was found to be 0.5 μg/ml. Chromatography was unaffacted by a range of commonly employed antiepileptic drugs or selected amino acids.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of aspirin and salicylic acid in transdermal perfusates. The compounds were separated on a C8 Nucleosil column (5 μm, 250×4.6 mm) using a mobile phase containing a mixture of water–acetonitrile–orthophosphoric acid (650:350:2, v/v/v) and a flow-rate of 1 ml/min. The transdermal samples were in phosphate-buffered saline (PBS) and could be injected directly onto the HPLC system. The method was reproducible with inter-day R.S.D. values of no greater than 3.46 and 2.60% for aspirin and salicylic acid, respectively. The method was linear over the concentration range 0.2–5.0 μg/ml and had a limit of detection of 0.05 μg/ml for both compounds. For certain samples, it was necessary to ensure that no transmembrane leakage of the aspirin prodrugs had occurred. In these cases, a gradient was introduced by increasing the acetonitrile content of the mobile phase after the salicylic acid had eluted. The method has been applied to the determination of aspirin and salicylic acid in PBS following in vitro application of the compounds to mouse skin samples.  相似文献   

12.
We developed and characterized a high-performance liquid chromatographic assay for the determination of nelfinavir (NFV), a potent HIV protease inhibitor, and its active metabolite M8 in human plasma. Extraction of the internal standard, M8 and NFV from the plasma buffered at pH 9.5 was achieved by a liquid–liquid extraction with a mixture of methyl-tert.-butyl ether and hexane. Following two washes of the reconstituted sample with hexane, separation was achieved on an octadecylsilyl analytical column with a mobile phase containing 0.1% trifluoroacetic acid–acetonitrile–methanol (51:46:5, v/v). Detection was performed using an ultraviolet photodiode-array detector. The signal was monitored at a wavelength of 220 nm. The assay was found to be linear and has been validated over the concentration range of 25 to 3000 μg/l for M8 and 25 to 6000 μg/l for NFV, from 500 μl of plasma. Recoveries were 98.9% (SD 8.9%), and 100.2% (SD 11.7%) for M8 and NFV, respectively. Concentrations that gave a signal-to-noise ratio of three (15 μg/l for both M8 and NFV) were selected to determine the limit of detection. The lower limit of quantification (25 μg/l for both M8 and NFV) was defined as the concentration for which the relative standard deviation and the percent deviation from the nominal concentration were lower than 20%.  相似文献   

13.
A reversed-phase high-performance liquid chromatographic method using acetonitrile–methanol–1 M perchloric acid–water (25:9:0.8:95, v/v/v) at a flow-rate of 1.0 ml min−1 on LiChrospher 100 RP 18 column (250×4 mm; 5 μm) with UV (254 nm) detection has been developed for the determination of sulfalene in plasma and blood cells after oral administration of the antimalarial drug metakelfin. Calibration curves were linear in the range 0.5–100 μg ml−1. The limit of quantification was 50 ng ml−1. Within-day and day-to-day coefficients of variation averaged 3.84 and 5.31%, respectively. Mean extraction recoveries of sulfalene from plasma and blood cells were 87.21 and 84.65%, respectively. Mean concentrations of sulfalene in plasma of P. falciparum cases on days 2, 7 and 15 were 44.58, 14.90 and 1.70 μg ml−1, respectively; in blood cells concentrations of sulfalene were 7.77, 3.25 and 0.75 μg ml−1, respectively, after oral treatment with two tablets (1000 mg) of metakelfin. Significant difference was recorded on day 2 for sulfalene concentration in blood cells of healthy and P. falciparum cases (t=9.49; P<0.001).  相似文献   

14.
A sensitive, quantitative reversed-phase high-performance liquid chromatographic method has been established for the simultaneous determination of butorphanol, a synthetic opioid, and its metabolites, hydroxybutorphanol and norbutorphanol, in human urine samples. The method involved extraction of butorphanol, hydroxybutorphanol, and norbutorphanol from urine (1.0 ml), buffered with 0.1 ml of 1.0 M ammonium acetate (pH 6.0), onto 1-ml Cyano Bond Elut columns. The eluent was evaporated under nitrogen and low heat, and reconstituted with the HPLC mobile phase, acetonitrile—methanol—water (20:10:70, v/v/v), containing 10 mM ammonium acetate and 10 mM TMAH (pH 5.0). The samples were chromatographed on a reversed-phase octyl 5-μm column. The analysis was accomplished by detection of the fluorescence of the three analytes, at excitation and emission wavelengths of 200 nm and 325 nm, respectively. The retention times for hydroxybutorphanol, norbutorphanol, the internal standard, and butorphanol were 5.5, 9.0, 13.0, and 23.4 min respectively. The validated quantitation range of the method was 1–100 ng/ml for butorphanol and hydroxybutorphanol, and 2–200 ng/ml for norbutorphanol in urine. The observed recoveries for butorphanol, hydroxybutorphanol, and norbutorphanol were 93%, 72%, and 50%, respectively. Standard curve correlation coefficients of 0.995 or greater were obtained during validation experiments and analysis of study samples. The method was applied on study samples from a clinical study of butorphanol, providing a pharmacokinetic profiling of butorphanol.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for the quantitative determination of paclitaxel in human urine. A comparison is made between solid-phase extraction (SPE) and liquid-liquid extraction (LLE) as sample pretreatment. The HPLC system consists of an APEX octyl analytical column and acetonitrile-methanol-0.2 μM ammonium acetate buffer pH 5 (4:1:5, v/v) as the mobile phase. Detection is performed by UV absorbance measurement at 227 nm. The SPE procedure involves extraction on Cyano Bond Elut columns. n-Butylchloride is the organic extraction fluid used for the LLE. The recoveries of paclitaxel in human urine are 79 and 75% for SPE and LLE, respectively. The accuracy for the LLE and SPE sample pretreatment procedures is 100.4 and 104.9%, respectively, at a 5 μg/ml drug concentration. The lower limit of quantitation is 0.01 μg/ml for SPE and 0.25 μg/ml for LLE. Stability data of paclitaxel in human urine are also presented.  相似文献   

16.
A new sensitive and rapid capillary electrophoresis (CE) assay for measuring reduced and oxidized thiols in human plasma has been developed. To prevent oxidation of the thiols, whole blood was immediately centrifuged after collection and the plasma proteins were precipitated with perchloric acid. The reduced thiols in the supernatant were derivatized quantitatively at 25°C, pH 7.5 with a fluorescent reagent, fluorescein-5-maleimide (FM). The total plasma concentration of thiols, including the fraction coupled to proteins, was assayed after an initial reduction of the disulfide linkage in plasma with dithiothreitol. The separation of FM-thiols was performed in an acetonitrile/10 mM sodium phosphate–50 mM SDS buffer [25:75 (v/v); pH 7.0] using a fused-silica capillary (57 cm×75 μm I.D.) at 45°C. A 3-mW argon-ion laser (λex 488 nm/λem 520 nm) was employed for FM-thiol detection. With the electric field of 530 V/cm, the time needed for the separation of FM-homocysteine, FM-glutathione and FM-N-acetylcysteine was less than 8 min. The lower limit of detection was 3 μM for the total thiols and 10 nM for the reduced thiols. The method was applied to the determination of homocysteine levels in plasma from patients with end-stage renal disease.  相似文献   

17.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

18.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

19.
A high-performance liquid chromatographic (HPLC) assay has been developed for the determination of the antifungal drug fluconazole in saliva and plasma of patients infected with the human immunodeficiency virus (HIV). Samples can be heated at 60°C for 30 min to inactivate the virus without loss of the analyte. The sample pretreatment involves a liquid-liquid extraction with chloroform-1-propanol (4:1, v/v). The chromatographic analysis is performed on a Lichrosorb RP-18 (5 μm) column by isocratic elution with a mobile phase of 0.01 M acetate buffer (pH 5.0)-methanol (70:30, v/v) and ultraviolet (UV) detection at 261 nm. The lower limit of is 100 ng/ml in plasma (using 500-μl samples) and 1 μg/ml in saliva (using 250-μl samples) and the method is linear up to 100 μg/ml in plasma and saliva. At a concentration of 5 μg/ml the within-day and between-day precision in plasma are 7.1 and 5.7%, respectively. In saliva the within-day and between-day precision is 10.8% (at 5 μg/ml). The methodology is now being used in pharmacokinetic studies in HIV-infected patients in our hospital.  相似文献   

20.
A high-performance liquid chromatography (HPLC) analytical method for the determination of oxolinic acid and flumequine in Artemia nauplii is described. The samples were extracted and cleaned up by a solid-phase extraction (SPE) procedure using SPE C18 cartridges. Oxolinic acid and flumequine were determined by reversed-phase HPLC using a mobile phase of methanol–0.1 M phosphate buffer, pH 3 (45:55, v/v) and a UV detection wavelength of 254 nm. Calibration curves were linear for oxolinic acid in the range of 0.2–50 μg/g (r2=0.9998) and for flumequine in the range of 0.3–50 μg/g (r2=0.9994). Mean recoveries amounted to 100.8% and 98.4% for oxolinic acid and flumequine, respectively. The quantification limit was 0.2 μg/g for oxolinic acid and 0.3 μg/g for flumequine. Quantitative data from an in vivo feeding study indicated excellent uptake of both drugs by Artemia nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号