首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotechnological potential of inulin for bioprocesses   总被引:2,自引:0,他引:2  
Chi ZM  Zhang T  Cao TS  Liu XY  Cui W  Zhao CH 《Bioresource technology》2011,102(6):4295-4303
Inulin consists of linear chains of β-2,1-linked d-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. In this review article, inulin and its applications in bioprocesses are overviewed. The tubers of many plants, such as Jerusalem artichoke, chicory, dahlia, and yacon contain a large amount of inulin. Inulin can be actively hydrolyzed by microbial inulinases to produce fructose, glucose and inulooligosaccharides (IOS). The fructose and glucose formed can be further transformed into ethanol, single-cell protein, single cell oil and other useful products by different microorganisms. IOS formed have many functions. Therefore, inulin can be widely used in food, feed, pharmaceutical, chemical and biofuels industries.  相似文献   

2.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

3.
Inulinases are fructofuranosyl hydrolases that target the β‐2,1 linkage of inulin and hydrolyze it into fructose, glucose and inulooligosaccharides (IOS), the latter are of growing interest as dietary fibers. Inulinases from various microorganisms have been purified, characterized and produced for industrial applications. However, there remains a need for inulinases with increased catalytic activity and better production yields to improve the hydrolysis process and fulfill the growing industrial demands for specific fibers. In this study, we used directed enzyme evolution to increase the yield and activity of an endoinulinase enzyme originated from the filamentous fungus Talaromyces purpureogenus (Penicillium purpureogenum ATCC4713). Our directed evolution approach yielded variants showing up to fivefold improvements in soluble enzyme production compared to the starting point which enabled high‐yield production of highly purified recombinant enzyme. The distribution of the enzymatic reaction products demonstrated that after 24 h of incubation, the main product (57%) had a degree of polymerization of 3 (DP3). To the best of our knowledge, this is the first application of directed enzyme evolution to improve inulooligosaccharide production. The approach enabled the screening of large genetic libraries within short time frames and facilitated screening for improved enzymatic activities and properties, such as substrate specificity, product range, thermostability and pH optimum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:868–877, 2018  相似文献   

4.
In the present study, the endoinulinase gene (EnInu) from Aspergillus niger CICIM F0620 was optimized according to the codon usage of Pichia pastoris and both the native and the optimized gene were expressed in P. pastoris. Use of the optimized gene resulted in the secretion of recombinant endoinulinase activity that reached 1,349 U ml?1, 4.18 times that observed using the native gene. This is the highest endoinulinase activity reported to date. The recombinant enzyme was optimally active at pH 6.0 and 60 °C. Moreover, inulooligosaccharides production from inulin was studied using the recombinant enzyme produced from the optimized gene. After 8 h under optimal conditions, which included 400 g l?1 inulin, an enzyme concentration of 40 U g?1 substrate, 50 °C and pH 6.0, the inulooligosaccharide yield was 91 %. The high substrate concentration and short reaction time described here should reduce production costs distinctly, compared with the conditions used in previous studies. Thus, this study may provide the basis for the industrial use of this recombinant endoinulinase for the production of inulooligosaccharides.  相似文献   

5.
微生物木糖发酵产乙醇的代谢工程   总被引:1,自引:0,他引:1  
张颖  马瑞强  洪浩舟  张维  陈明  陆伟 《生物工程学报》2010,26(10):1436-1443
利用木质纤维素发酵生产乙醇具有广泛的应用前景。而自然界中缺少有效转化木糖为乙醇的微生物是充分利用纤维素水解产物、提高乙醇产率、降低生产成本的关键因素。多年来研究者利用分子生物学技术对微生物菌株进行了代谢工程改造,使其能更有效地利用木糖生产乙醇。以下主要对运动发酵单胞菌、大肠杆菌和酵母等候选产乙醇微生物的木糖代谢工程研究进展进行了概述。  相似文献   

6.
In silico optimization of bioethanol production from lignocellulosic biomasses is investigated by combining process systems engineering approach and systems biology approach. Lignocellulosic biomass is an attractive sustainable carbon source for fermentative production of bioethanol. For enhanced ethanol production, metabolic engineering of wild-type strains—that can metabolize both hexose and pentose sugars or microbial consortia consisting of substrate-selective microbes—may be advantageous. This study presents a detailed in silico analysis of bioethanol production from glucose-xylose mixtures of various compositions by batch mono-culture and co-culture fermentation of specialized microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production, and the maximization of ethanol productivity is addressed by computing optimal aerobic–anaerobic switching times. Effects of ten metabolic engineering strategies that have been suggested in the literature for ethanol overproduction, have been evaluated for their efficiency in enhancing the ethanol productivity in the context of batch mono-culture and co-culture processes.  相似文献   

7.
This study presents a detailed in silico analysis of bioethanol production from glucose/xylose mixtures of various compositions by fed-batch co-culture and mono-culture fermentation of specialized microbes. The mono-culture consists of recombinant Saccharomyces cerevisise that can metabolize both hexose and pentose sugars while the co-culture system consists of substrate-selective microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production in fed-batch culture with constant feed rates and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. The simulation results clearly point to the superior performance of fed-batch fermentation of microbial co-culture against fed-batch fermentation of mono-culture for bioethanol production from glucose/xylose mixtures. A set of potential genetic engineering strategies for enhancement of S. cerevisiae and Escherichia coli strains performance have been identified. Such in silico predictions using genome-scale models provide valuable guidance for conducting in vivo metabolic engineering experiments.  相似文献   

8.
Prebiotic substances are extracted from various plant materials or enzymatic hydrolysis of different substrates. The production of fructo-oligosaccharide (FOS) and inulo-oligosaccharide (IOS) was performed by applying two substrates, sucrose and inulin; oligosaccharide yields were maximized using central composite design to evaluate the parameters influencing oligosaccharide production. Inulin from Jerusalem artichoke (5–15% w/v), sucrose (50–70% w/v), and inulinase from Aspergillus niger (2–7 U/g) were used as variable parameters for optimization. Based on our results, the application of sucrose and inulin as co-substrates for oligosaccharide production through inulinase hydrolysis and synthesis is viable in comparative to a method using a single substrate. Maximum yields (674.82?mg/g substrate) were obtained with 5.95% of inulin, 59.87% of sucrose, and 5.68 U/g of inulinase, with an incubation period of 9?hr. The use of sucrose and inulin as co-substrates in the reaction simultaneously produced FOS and IOS from sucrose and inulin. Total conversion yield was approximately 67%. Our results support the high value-added production of oligosaccharides using Jerusalem artichoke, which is generally used as a substrate in prebiotics and/or bioethanol production.  相似文献   

9.
The industrial production of short-chain fructooligosaccharides (FOS) and inulooligosaccharides is expanding rapidly due to the pharmaceutical importance of these compounds. These compounds, concisely termed prebiotics, have biofunctional properties and hence health benefits if consumed in recommended dosages. Prebiotics can be produced enzymatically from sucrose elongation or via enzymatic hydrolysis of inulin by exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, 1) end of inulin-releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F3), inulotetraoses (F4) and inulopentaoses (F5) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short-chain fructooligosaccharide. The FOS produced by the action of fructosyltransferases are 1-kestose (GF2), nystose (GF3) and fructofuranosyl nystose (GF4). The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a technical challenge. This paper critically explores recent research trends in the production and application of short-chain oligosaccharides. Inulin and enzyme sources for the production of prebiotics are discussed. The mechanism of FOS chain elongation and also the health benefits associated with prebiotics consumption are discussed in detail.  相似文献   

10.
Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lower inputs (e.g. nitrogen) than grain corn. Soluble sugars, including sucrose, glucose and fructose were extracted by pressing the stalks at dough stage (R4). The initial extracted syrup fermented faster than the control culture grown on a yeast extract/phosphate/sucrose medium. The syrup was subsequently concentrated 1.25–2.25 times, supplemented with urea, and fermented using Saccharomyces cerevisiae for up to 96 h. The final ethanol concentrations obtained were 8.1 % (v/v) to 15.6 % (v/v), equivalent to 90.3–92.2 % of the theoretical yields. However, fermentation productivity decreased with sugar concentration, suggesting that the yeast might be osmotically stressed at the increased sugar concentrations. These results provide in-depth information for utilizing tropical maize syrup for bioethanol production that will help in tropical maize breeding and development for use as another feedstock for the biofuel industry.  相似文献   

11.
Pichia polymorpha has inulinase activity and could be used for the production of fructose syrup from inulin. The application of immobilized P. polymorpha whole cells for the continuous hydrolysis of inulin is, however, limited since the biosynthesis of this enzyme system is repressed by the reaction products, dextrose and fructose. A derepressed mutant hyperproducer of inulinase was isolated after treatment with EMS followed by a selection step with deoxyglucose.  相似文献   

12.
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.  相似文献   

13.
Micro and macroalgal biomass: A renewable source for bioethanol   总被引:2,自引:0,他引:2  
Population outburst together with increased motorization has led to an overwhelming increase in the demand for fuel. In the milieu of economical and environmental concern, algae capable of accumulating high starch/cellulose can serve as an excellent alternative to food crops for bioethanol production, a green fuel for sustainable future. Certain species of algae can produce ethanol during dark-anaerobic fermentation and thus serve as a direct source for ethanol production. Of late, oleaginous microalgae generate high starch/cellulose biomass waste after oil extraction, which can be hydrolyzed to generate sugary syrup to be used as substrate for ethanol production. Macroalgae are also harnessed as renewable source of biomass intended for ethanol production. Currently there are very few studies on this issue, and intense research is required in future in this area for efficient utilization of algal biomass and their industrial wastes to produce environmentally friendly fuel bioethanol.  相似文献   

14.
1H-NMR analysis was applied to investigate the hydrolytic activity of Aspergillus awamori inulinase. The obtained NMR signals and deduced metabolite pattern revealed that the enzyme cleaves off only fructose from inulin and does not possess transglycosylating activity. Kinetics for the enzyme hydrolysis of inulooligosaccharides with different degree of polymerization (d.p.) were recorded. The enzyme hydrolyzed both beta2,1- as well as beta2,6-fructosyl linkages in fructooligosaccharides. From the k(cat)/K(m) ratios obtained with inulooligosaccharides with d.p. from 2 to 7, we deduce that the catalytic site of the inulinase contains at least five fructosyl-binding sites and can be classified as exo-acting enzyme. Product analysis of inulopentaose and inulohexaose hydrolysis by the Aspergillus inulinase provided no evidence for a possible multiple-attack mode of action, suggesting that the enzyme acts exclusively as an exoinulinase.  相似文献   

15.
酿酒酵母纤维素乙醇统合加工(CBP)的策略及研究进展   总被引:2,自引:0,他引:2  
木质纤维素乙醇的统合生物加工过程(Consolidated bioprocessing,CBP)是将纤维素酶和半纤维素酶生产、纤维素水解和乙醇发酵过程组合或部分组合,通过一种微生物完成。统合生物加工过程有利于降低生物转化过程的成本,越来越受到研究者的普遍关注。酿酒酵母Saccharomyces cerevisiae是传统的乙醇发酵菌株。介绍了影响外源基因在酿酒酵母中表达水平的因素,纤维素酶和半纤维素酶在酿酒酵母中表达研究进展及利用酿酒酵母统合加工纤维素乙醇的策略。  相似文献   

16.
The subject of this study was the fructan and sucrose degrading enzymes of bacterium Pseudobutyrivibrio ruminis strain 3. It was stated that cell extract from bacteria growing on inulin contained β-fructofuranosidase (EC 3.2.1.80 and/or EC 3.2.1.26) and sucrose phosphorylase (EC 2.4.1.7), while the bacteria maintained on sucrose showed only phosphorylase. Partially purified β-fructofuranosidase digested inulooligosaccharides and sucrose to fructose or fructose and glucose, respectively, but was unable to degrade the long chain polymers of commercial inulin and Timothy grass fructan. Digestion rate of inulooligosaccharides fit Michaelis–Menten kinetics with Vmax 5.64 μM/mg/min and Km 1.274%, respectively, while that of sucrose was linear. Partially purified sucrose phosphorylase digested only sucrose. The digestion products were fructose, glucose-1P and free glucose. The reaction was in agreement with Michaelis–Menten kinetics. The Vmax were 0.599 and 0.584 μM/mg/min, while Km were 0.190 and 0.202% for fructose release and glucose-1P formation, respectively, when bacteria grew on inulin. The Vmax were, however, 1.37 and 1.023 μM/mg/min, while Km were 0.264 and 0.156%, if bacteria were grown on sucrose. The free glucose was hardly detectable for the enzyme originated from inulin grown bacteria, but glucose levels ranged from 0.05 to 0.25 μM/mg/min, when cell extract from bacteria grown on sucrose was used. Release of free glucose was observed when no inorganic phosphate was present in reaction mixture.  相似文献   

17.
We are in an energy crisis caused by years of neglect to alternative energy sources. There are many possible solutions and a number of these are based on microorganisms. These include bioethanol, biobutanol, biodiesel, biohydrocarbons, methane, methanol, electricity-generating microbial fuel cells, and production of hydrogen via photosynthetic microbes. In this review, I will focus on the first four possibilities.  相似文献   

18.
生物可再生能源是最有前景的石油替代品之一.生物能源的生产原料包括:植物、有机废弃物和微生物.微生物在生物能源生产上有着广泛的应用,利用微生物制备的主要生物能源包括:生物柴油、生物乙醇、生物甲烷等.某些微生物如微藻和真菌可以生产大量油脂,这些油脂可以转化为生物柴油;有些微生物如酵母可以将糖类、淀粉以及纤维素转化为燃料乙醇,添加乙醇的汽油或柴油燃烧排放明显降低;还有些厌氧微生物可以将有机废弃物转化为甲烷,可用做家用燃气、车用燃气或发电.除此之外微生物还具有在生产能源的同时治理环境污染的优势.总之研究开发微生物在生物能源生产中的应用有利于世界可持续发展.  相似文献   

19.
Lignin is an abundant plant-based biopolymer that has found applications in a variety of industries from construction to bioethanol production. This recalcitrant branched polymer is naturally degraded by many different species of microorganisms, including fungi and bacteria. These microbial lignin degradation mechanisms provide a host of possibilities to overcome the challenges of using harmful chemicals to degrade lignin biowaste in many industries. The classes and mechanisms of different microbial lignin degradation options available in nature form the primary focus of the present review. This review first discusses the chemical building blocks of lignin and the industrial sources and applications of this multifaceted polymer. The review further places emphasis on the degradation of lignin by natural means, discussing in detail the lignin degradation activities of various fungal and bacterial species. The lignin-degrading enzymes produced by various microbial species, specifically white-rot fungi, brown-rot fungi, and bacteria, are described. In the end, possible directions for future lignin biodegradation applications and research investigations have been provided.  相似文献   

20.
Hardwood spent sulphite liquors (HSSLs) are by-products from the pulping industry rich in pentoses, which are not yet fully exploited for bioprocessing, namely for the production of bioethanol. The sustainable fermentation of pentoses into bioethanol is a challenge to overcome. Besides sugars, HSSLs contains inhibitors that decrease the possibility of bioprocessing of these by-products. Nevertheless, recent studies have brought new insights in using HSSLs for bioethanol production. This paper reviews the results of relevant studies carried out with HSSLs towards bioprocessing to bioethanol. The composition of SSLs was compared and related with the wood origin stressing specificity of microbial inhibitors from HSSL and their anti-microbial effect. The different fermentative processes, the microorganisms used, and the strategies to improve yield and productivity used so far were also reviewed. This review allowed concluding that research is still needed in several areas, including optimization of detoxification processes, fermentation strategies and selection of suitable microbial strains in order to achieve the integration of the different steps needed for HSSLs bioconversion into ethanol thus contributing for sustainability of pulping mills within biorefinary concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号