首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic cleavage of the extracellular domain of the type II IL-1 decoy receptor (IL-1RII) generates soluble IL-1-binding proteins that prevent excessive bioactivity by binding free IL-1. In this study we report that an aminopeptidase, aminopeptidase regulator of TNFR1 shedding (ARTS-1), is required for IL-1RII shedding. Coimmunoprecipitation experiments demonstrate an association between endogenous membrane-associated ARTS-1 and a 47-kDa IL-1RII, consistent with ectodomain cleavage of the membrane-bound receptor. A direct correlation exists between ARTS-1 protein expression and IL-1RII shedding, as cell lines overexpressing ARTS-1 have increased IL-1RII shedding and decreased membrane-associated IL-1RII. Basal IL-1RII shedding is absent from ARTS-1 knockout cell lines, demonstrating that ARTS-1 is required for constitutive IL-1RII shedding. Similarly, PMA-mediated IL-1RII shedding is almost entirely ARTS-1-dependent. ARTS-1 expression also enhances ionomycin-induced IL-1RII shedding. ARTS-1 did not alter levels of membrane-associated IL-1RI or IL-1R antagonist release from ARTS-1 cell lines, which suggests that the ability of ARTS-1 to promote shedding of IL-1R family members may be specific for IL-1RII. Further, increased IL-1RII shedding by ARTS-1-overexpressing cells attenuates the biological activity of IL-1beta. We conclude that the ability of ARTS-1 to enhance IL-1RII shedding represents a new mechanism by which IL-1-induced cellular events can be modulated. As ARTS-1 also promotes the shedding of the structurally unrelated 55-kDa, type I TNF receptor and the IL-6R, we propose that ARTS-1 may play an important role in regulating innate immune and inflammatory responses by increasing cytokine receptor shedding.  相似文献   

2.
The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1β-mediated inducible proteolytic cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1β-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.  相似文献   

3.
Extracellular tumor necrosis factor (TNF) receptors function as TNF-binding proteins that modulate TNF activity. In human vascular endothelial cells (HUVEC), extracellular TNFR1 (type I TNF receptor, TNFRSF1A) is generated by two mechanisms, proteolytic cleavage of soluble TNFR1 ectodomains and the release of full-length 55-kDa TNFR1 in the membranes of exosome-like vesicles. TNFR1 release from HUVEC is known to involve the association between ARTS-1 (aminopeptidase regulator of TNFR1 shedding), an integral membrane aminopeptidase, and TNFR1. The goal of this study was to identify ARTS-1 binding partners that modulate TNFR1 release to the extracellular space. A yeast two-hybrid screen of a human placenta cDNA library showed that NUCB2 (nucleobindin 2), via its helix-loop-helix domains, binds the ARTS-1 extracellular domain. The association between endogenous ARTS-1 and NUCB2 in HUVEC was demonstrated by co-immunoprecipitation experiments, which showed the formation of a calcium-dependent NUCB2.ARTS-1 complex that associated with a subset of total cellular TNFR1. Confocal microscopy experiments demonstrated that this association involved a distinct population of NUCB2-containing intracytoplasmic vesicles. RNA interference was utilized to specifically knock down NUCB2 and ARTS-1 expression, which demonstrated that both are required for the constitutive release of a full-length 55-kDa TNFR1 within exosome-like vesicles as well as the inducible proteolytic cleavage of soluble TNFR1 ectodomains. We propose that calcium-dependent NUCB2.ARTS-1 complexes, which associate with TNFR1 prior to its commitment to pathways that result in either the constitutive release of TNFR1 exosome-like vesicles or the inducible proteolytic cleavage of TNFR1 ectodomains, play an important role in mediating TNFR1 release to the extracellular compartment.  相似文献   

4.
5.
The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling.  相似文献   

6.
Interleukin-13 (IL-13) possesses two types of receptor: the heterodimer, composed of the IL-13Ralpha1 chain (IL-13Ralpha1) and the IL-4Ralpha chain (IL-4Ralpha), transducing the IL-13 signals; and the IL-13Ralpha2 chain (IL-13Ralpha2), acting as a nonsignaling "decoy" receptor. Extracellular portions of both IL-13Ralpha1 and IL-13Ralpha2 are composed of three fibronectin type III domains, D1, D2, and D3, of which the last two comprise the cytokine receptor homology modules (CRHs), a common structure of the class I cytokine receptor superfamily. Thus far, there has been no information about the critical amino acids of the CRHs or the role of the D1 domains of IL-13Ralpha1 and IL-13Ralpha2 in binding to IL-13. In this study, we first built the homology modeling of the IL-13.hIL-13 receptor complexes and then predicted the amino acids involved in binding to IL-13. By incorporating mutations into these amino acids, we identified Tyr-207, Asp-271, Tyr-315, and Asp-318 in the CRH of human IL-13Ralpha2, and Leu-319 and Tyr-321 in the CRH of human IL-13Ralpha1, as critical residues for binding to IL-13. Tyr-315 in IL-13Ralpha2 and Leu-319 in IL-13Ralpha1 are positionally conserved hydrophobic amino acid residues. Furthermore, by using D1 domain-deleted mutants, we found that the D1 domain is needed for the expression of IL-13Ralpha2, but not IL-13Ralpha1, and that the D1 domain of IL-13Ralpha1 is important for binding to IL-13, but not to IL-4. These results provide the basis for a precise understanding of the interaction between IL-13 and its receptors.  相似文献   

7.
8.
Signals from the IL-1 receptor (IL-1R)/Toll-like receptor (TLR) family and TNF receptor (TNFR) superfamily are critical for regulating the function of antigen-presenting cells such as dendritic cells (DCs). It has been revealed that TNF receptor-associated factor 6 (TRAF6), a signaling adapter molecule common to the IL-1R/TLR family and TNFR superfamily, is important not only for DC maturation, cytokine production, and T cell stimulatory capacity of DCs in response to TLR ligands (e.g. lipopolysaccharide) or CD40 ligand, but also for the homeostasis of splenic DC subsets.  相似文献   

9.
IL-13 is a Th2-derived pleiotropic cytokine that recently was shown to be a key mediator of allergic asthma. IL-13 mediates its effects via a complex receptor system, which includes the IL-4R alpha-chain, IL-4Ralpha, and at least two other cell surface proteins, IL-13Ralpha1 and IL-13Ralpha2, which specifically bind IL-13. IL-13 has been reported to have very limited effects on mouse B cells. It was unclear whether this was due to a lack of receptor expression, a disproportionate relative expression of the receptor components, or an additional subunit requirement in B cells. To determine the requirements for IL-13 signaling in murine B cells, we examined IL-13-dependent Stat6 activation and CD23 induction in the murine B cell line, A201.1. A201.1 cells responded to murine IL-4 via the type I IL-4R, but were unresponsive to IL-13, and did not express IL-13 receptor. B220(+) splenocytes also failed to signal in response to IL-13 and did not express IL-13 receptor. We transfected A201.1 cells with human IL-4Ralpha, IL-13Ralpha1, or both. Transfectants expressing either human IL-4Ralpha or human IL-13Ralpha1 alone were unable to respond or signal to IL-13. Thus, human IL-13Ralpha1 could not combine with the endogenous murine IL-4Ralpha to generate a functional IL-13R. However, cells transfected with both human IL-4Ralpha and IL-13Ralpha1 responded to IL-13. Thus, the relative lack of IL-13 responsiveness in murine B cells is due to a lack of receptor expression. Furthermore, the heterodimeric interaction between IL-4Ralpha and IL-13Ralpha1 is species specific.  相似文献   

10.
Interleukin-15 (IL-15) is a potent inhibitor of several apoptosis pathways. One prominent path toward apoptosis is the ligand-induced association of TNF receptor 1 (TNFR1) with death domain adaptor proteins. Studying if and how IL-15 blocks TNFR1-mediated apoptosis in a murine fibroblast cell line (L929), we show here that IL-15 blocks TNFR1-induced apoptosis via IL-15Ralpha chain signaling. The intracellular tail of IL-15Ralpha shows sequence homologies to the TRAF2 binding motifs of CD30 and CD40. Most important, binding of IL-15 to IL-15Ralpha successfully competes with the TNFR1 complex for TRAF2 binding, which may impede assembly of key adaptor proteins to the TNFR1 complex, and induces IkappaBalpha phosphorylation. Thus, IL-15Ralpha chain stimulation is a powerful deflector of cell death very early in the apoptosis signaling cascade, while TNF-alpha and IL-15 surface as major opponents in apoptosis control.  相似文献   

11.
Kinetic analysis of the interleukin-13 receptor complex   总被引:15,自引:0,他引:15  
Interleukin (IL)-13 is a key cytokine associated with the asthmatic phenotype. It signals via its cognate receptor, a complex of IL-13 receptor alpha1 chain (IL-13Ralpha1) with IL-4Ralpha; however, a second protein, IL-13Ralpha2, also binds IL-13. To determine the binding contributions of the individual components of the IL-13 receptor to IL-13, we have employed surface plasmon resonance and equilibrium binding assays to investigate the ligand binding characteristics of shIL-13Ralpha1, shIL-13Ralpha2, and IL-4Ralpha. shIL-13Ralpha1 bound IL-13 with moderate affinity (K(D) = 37.8 +/- 1.8 nm, n = 10), whereas no binding was observed for hIL-4Ralpha. In contrast, shIL-13Ralpha2 produced a high affinity interaction with IL-13 (K(D) = 2.49 +/- 0.94 nm n = 10). IL-13Ralpha2 exhibited the binding characteristics of a negative regulator with a fast association rate and an exceptional slow dissociation rate. Although IL-13 interacted weakly with IL-4Ralpha on its own (K(D) > 50 microm), the presence of hIL-4Ralpha significantly increased the affinity of shIL-13Ralpha1 for IL-13 but had no effect on the binding affinity of IL-13Ralpha2. Detailed kinetic analyses of the binding properties of the heteromeric complexes suggested a sequential mechanism for the binding of IL-13 to its signaling receptor, in which IL-13 first binds to IL-13Ralpha1 and this then recruits IL-4Ralpha to stabilize a high affinity interaction.  相似文献   

12.
13.
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.  相似文献   

14.
15.
Interleukin-13 (IL-13), a Th2 cytokine, plays a pivotal role in pathogenesis of bronchial asthma via IL-13 receptor alpha1 (IL-13Ralpha1) and IL-4 receptor alpha (IL-4Ralpha). Recent studies show that a decoy receptor for IL-13, namely IL-13Ralpha2, mitigates IL-13 signaling and function. This study provides evidence for regulation of IL-13Ralpha2 production and release and IL-13-dependent signaling by lysophosphatidic acid (LPA) in primary cultures of human bronchial epithelial cells (HBEpCs). LPA treatment of HBEpCs in at imedependent fashion increased IL-13Ralpha2 gene expression without altering the mRNA levels of IL-13Ralpha1 and IL-4Ralpha. Pretreatment with pertussis toxin (100 ng/ml, 4 h) or transfection of c-Jun small interference RNA or an inhibitor of JNK attenuated LPA-induced IL-13Ralpha2 gene expression and secretion of soluble IL-13Ralpha2. Overexpression of catalytically inactive mutants of phospholipase D (PLD) 1 or 2 attenuated LPA-induced IL-13Ralpha2 gene expression and protein secretion as well as phosphorylation of JNK. Pretreatment of HBEpCs with 1 microM LPA for 6 h attenuated IL-13-but not IL-4-induced phosphorylation of STAT6. Transfection of HBEpCs with IL-13Ralpha2 small interference RNA blocked the effect of LPA on IL-13-induced phosphorylation of STAT6. Furthermore, pretreatment with LPA (1 microM, 6 h) attenuated IL-13-induced eotaxin-1 and SOCS-1 gene expression. These results demonstrate that LPA induces IL-13Ralpha2 expression and release via PLD and JNK/AP-1 signal transduction and that pretreatment with LPA down-regulates IL-13 signaling in HBEpCs. Our data suggest a novel mechanism of regulation of IL-13Ralpha2 and IL-13 signaling that may be of physiological relevance to airway inflammation and remodeling.  相似文献   

16.
Inflammatory cytokines or soluble factors are essential in the pathogenesis of rheumatoid arthritis (RA). Leflunomide is an effective disease modifying antirheumatic drug (DMARD) in RA. The objective of the present study was to evaluate for the first time the effects of A77 1726 on cytokine (interleukin (IL)-8, IL-10, IL-11 secretion and tumor necrosis factor-alpha soluble receptor I (sTNFRI)) shedding in human RA fibroblast-like synoviocytes (FLS). At 100 microM, we observed an increase in IL-10 secretion, a decrease in IL-11 release and no effect on sTNFRI shedding and IL-8 secretion in IL-1beta-stimulated human RA FLS. Furthermore, at this dose, our results also confirmed that A77 1726 decreased IL-6 and prostaglandin E2 (PGE2) synthesis while it increased IL-1 receptor antagonist secretion (IL-1Ra). The mitogen-activated protein kinases (MAPKs) represent an attractive target for RA because they can regulate cytokine expression. At 100 microM, the effect of A77 1726 on IL-10 and IL-11 secretion seemed to be associated with the status of p38 MAPK activation. Our results confirmed the immunoregulatory action of leflunomide in the cytokine network involved in RA pathogenesis. It could shift the balance from cytokine mediated inflammation to cytokine directed inhibition of the inflammatory process.  相似文献   

17.
18.
As interleukin (IL)-13 and IL-4 play a major role in various diseases including asthma, allergy, and malignancies, it is desirable to generate a molecule that blocks the effects of both cytokines. We previously generated a human IL-13 mutant (IL-13E13K), which is a powerful antagonist of IL-13, blocking the biological activities of IL-13. We now show that IL-13E13K also competitively inhibits signaling and biological activities of IL-4 through type II and partially through type III IL-4 receptor (R) system. IL-13E13K completely blocked the IL-4-induced phosphorylation of STAT6 and IL-4-dependent protein synthesis in cells expressing type II and partially type III IL-4R but not type I IL- 4R. Consistent with the inhibition of biological activities, IL-13E13K inhibited IL-4 binding to type II IL-4R-expressing cells but not to type I IL-4R-expressing cells. The inhibition efficiency of IL-4 binding by IL-13E13K was relatively lower compared to wtIL-13 even though IL-13E13K bound to IL-13Ralpha1 positive cells with a similar affinity to wtIL-13. These results indicate that Glu13 in IL-13 associates with IL-4Ralpha, and mutation to lysine decreases its binding ability to IL-4Ralpha chain. IL-13E13K binds to IL- 13Ralpha1, which is shared by both IL-13R and IL-4R systems. Consequently, IL-13E13K inhibits IL-4 binding to these cells and prevents heterodimer formation between IL-13Ralpha1 and IL-4Ralpha chains. This interference by IL-13E13K blocks the biological activities of not only IL-13 but also partially of IL-4. Thus, IL-13E13K may be a useful agent for the treatment of diseases such as asthma, allergic rhinitis, and cancer, which are dependent on signaling through both IL-4 and IL-13 receptors.  相似文献   

19.
IL-13, a critical cytokine for allergic inflammation, exerts its effects through a complex receptor system including IL-4Ralpha, IL-13Ralpha1, and IL-13Ralpha2. IL-4Ralpha and IL-13Ralpha1 form a heterodimeric signaling receptor for IL-13. In contrast, IL-13Ralpha2 binds IL-13 with high affinity but does not signal. IL-13Ralpha2 exists on the cell surface, intracellularly, and in soluble form, but no information is available regarding the relative distributions of IL-13Ralpha2 among these compartments, whether the compartments communicate, and how the relative expression levels impact IL-13 responses. Herein, we investigated the distribution of IL-13Ralpha2 in transfected and primary cells, and we evaluated how the total level of IL-13Ralpha2 expression impacted its distribution. Our results demonstrate that the distribution of IL-13Ralpha2 is independent of the overall level of expression. The majority of the IL-13Ralpha2 protein existed in intracellular pools. Surface IL-13Ralpha2 was continually released into the medium in a soluble form, yet surface expression remained constant supporting receptor trafficking to the cell surface. IL-13Ralpha2 inhibited IL-13 signaling proportionally to its level of expression, and this inhibition could be overcome with high concentrations of IL-13.  相似文献   

20.
The structure and binding mode of interleukin-18   总被引:11,自引:0,他引:11  
Interleukin-18 (IL-18), a cytokine formerly known as interferon-gamma- (IFN-gamma-) inducing factor, has pleiotropic immunoregulatory functions, including augmentation of IFN-gamma production, Fas-mediated cytotoxicity and developmental regulation of T-lymphocyte helper type I. We determined the solution structure of IL-18 as a first step toward understanding its receptor activation mechanism. It folds into a beta-trefoil structure that resembles that of IL-1. Extensive mutagenesis revealed the presence of three sites that are important for receptor activation: two serve as binding sites for IL-18 receptor alpha (IL-18Ralpha), located at positions similar to those of IL-1 for IL-1 receptor type I (IL-1RI), whereas the third site may be involved in IL-18 receptor beta (IL-18Rbeta) binding. The structure and mutagenesis data provide a basis for understanding the IL-18-induced heterodimerization of receptor subunits, which is necessary for receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号