首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of calcitonin gene-related peptide (CGRP) on the cholinergically mediated twitch contraction in longitudinal muscle strips of the small intestine (duodenum, jejunum, ileum) of guinea-pig, pig and man was investigated. Independently of the anatomical region, CGRP inhibited the twitch response in the different specimens of all three species by about 40% with similar IC50 values (1.5-2.4 nmol/l). Only in the guinea-pig small intestine CGRP induced a contraction of the smooth muscle which was sensitive to scopolamine and tetrodotoxin. The electrically evoked [3H]acetylcholine release from jejunal longitudinal muscle strips with myenteric plexus attached of the guinea-pig, which were incubated with [3H]choline, was concentration-dependently inhibited by CGRP. A direct relaxant effect of CGRP on smooth muscle tone of carbachol precontracted preparations was only observed in specimens of the guinea-pig. In conclusion, presynaptic inhibitory CGRP receptors on cholinergic neurones modulate the release of acetylcholine in different parts of the small intestine.  相似文献   

2.
Electrical activity of the tracheal smooth muscle was studied using extracellular bipolar electrodes in 37 decerebrate, paralyzed, and mechanically ventilated dogs. A spontaneous oscillatory potential that consisted of a slow sinusoidal wave of 0.57 +/- 0.13 (SD) Hz mean frequency but lacked a fast spike component was recorded from 15 dogs. Lung collapse accomplished by bilateral pneumothoraxes evoked or augmented the slow potentials that were associated with an increase in tracheal muscle contraction in 26 dogs. This suggests that the inputs from the airway mechanoreceptors reflexly activate the tracheal smooth muscle cells. Bilateral vagal transection abolished both the spontaneous and the reflexly evoked slow waves and provided relaxation of the tracheal smooth muscle. Electrical stimulation of the distal nerve with a train pulse (0.5 ms, 1-30 Hz) evoked slow-wave oscillatory potentials accompanied by a contraction of the tracheal smooth muscle in all the experimental animals. Our observations in this in vivo study confirm that the electrical activity of tracheal smooth muscle consists of slow oscillatory potentials and that tracheal contraction is at least partly coupled to the slow-wave activity of the smooth muscle.  相似文献   

3.
The venom of V. cincta contains acetylcholine (ACh), histamine and 5-hydroxytryptamine (5-HT). Blockers of these agonists did not block completely the hypotensive and smooth muscle contractile activity of venom. On smooth muscle, there was a residual slow contraction. The active substance which produced this slow contraction was separated by solvent extraction, gel filtration and TLC. The purified material (which has been provisionally designated "Vecikinin") lowered cat, rat and guinea pig blood pressure, increased amplitude of cardiac contraction, and increased capillary permeability. Vecikinin contracted several smooth muscle preparations (rat uterus, rat ascending colon, guinea pig ileum, guinea pig colon and rat ileum), while relaxing rat duodenum. Its contractile activity was not lost on boiling, but acid or alkali-boiling reduced its contractile activity. It was inactivated on incubation with chymotrypsin and carboxypeptidase but not with trypsin, pepsin or leucine aminopeptidase. It is a peptide, appears to be of low molecular weight, and could be distinguished from substance P, angiotensin, bradykinin and hornet or wasp kinin.  相似文献   

4.
Nitric oxide (NO) inhibits the release of acetylcholine and cholinergic contractions in the small intestine of several species, but no information is available about the mouse ileum. This study examines the effects of NO on the electrically evoked release of [3H]acetylcholine and smooth muscle contraction in myenteric plexus-longitudinal muscle preparations of wild-type mice and of neuronal NO synthase (nNOS) and endothelial NOS (eNOS) knockout mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) and the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) concentration dependently increased the evoked [3H]acetylcholine release and cholinergic contractions in preparations from wild-type mice and from eNOS knockout mice. Effects of L-NNA were specifically antagonized by L-arginine. In contrast, L-NNA and ODQ did not modify the release and contractions in preparations from nNOS knockout mice. The NO donor S-nitroso-N-acetyl-DL-penicillamine inhibited the electrically evoked release of [3H]acetylcholine and longitudinal muscle contractions in a quantitatively similar manner in wild-type preparations as well as in nNOS and eNOS knockout preparations. We conclude that endogenous NO released by electrical field stimulation tonically inhibits the release of acetylcholine. Furthermore, data suggest that nNOS and not eNOS is the enzymatic source of NO-mediating inhibition of cholinergic neurotransmission in mouse ileum.  相似文献   

5.
Nitric oxide (NO) and calcium channel blockers are two agents that can affect gastrointestinal motility. The goal of this work was to study the rabbit intestinal smooth muscle contraction response to (1) sodium nitroprusside (SNP), the NO donor, and its potential mechanism of action, and (2) nifedipine, the l-type Ca2+ channel blocker; to clarify the degree of participation by extra- and intracellular Ca2+ in smooth muscle contraction. We used standard isometric tension and intracellular micro-electrode recordings. To record the activity of the longitudinal smooth muscle of the ileum, segments of 1.5?cm length of the ileum were suspended vertically in organ baths of Krebs solution. The mechanical activity of the isolated ileal longitudinal muscle was recorded. Different substances were added, and the changes produced on spontaneous contraction were recorded. We found that SNP produced significant decrease, while nitric oxide synthase inhibitor produced significant increase in the amplitude of spontaneous contractions. Both apamin, the Ca2+-dependent K+ channel blocker, and methylene blue, the inhibitor of soluble guanylate cyclase, alone, partially decreased relaxation induced by SNP. Addition of both methylene blue and apamine together abolished the inhibitory effect produced by SNP on spontaneous contractions. Nifedipine produced significant decrease in the amplitude of spontaneous contractions. In conclusion, in longitudinal muscle of rabbit ileum, calcium channels blocker are potent inhibitors of spontaneous activity. However, both extracellular and intracellular Ca2+ participates in the spontaneous contractions. NO also has inhibitory effect on spontaneous activity, and this effect is mediated by cGMP generation system and Ca2+-dependent K+ channels.  相似文献   

6.
The relationship between transmural potential difference (PD) and smooth muscle electrical and mechanical activity was investigated in the rabbit ileum in vitro. Transmural PD was monitored using agar salt bridge electrodes connected via calomel half cells to an electrometer. Force displacement transducers recorded predominantly longitudinal smooth muscle activity. Concurrently, predominantly circular muscle activity was recorded at three sites using intraluminal pressure probes. At the same sites, suction electrodes monitored electrical activity of the smooth muscle. In all experiments, fluctuations in transmural PD were temporally linked to smooth muscle mechanical and electrical activity. The frequency of PD oscillations, electrical slow waves, and cyclic pressure changes were identical within each segment. Adrenaline abolished smooth muscle electrical spiking, all mechanical activity, and transmural fluctuations in PD. However, the slow waves were not abolished, though their frequency was increased. Phentolamine but not propranolol reversed the effects of adrenaline, thus slow wave frequency is influenced by alpha-adrenergic stimulation in the rabbit ileum. In conclusion, oscillations in transmural PD are unrelated to the ionic processes associated with the slow wave. However, they are in some way linked to smooth muscle contractile activity, possibly via an intrinsic neural mechanism as observed in the guinea pig.  相似文献   

7.
Effects of the aqueous extract of T. sessilifolius on the gastrointestinal muscle were investigated on smooth muscle preparations isolated from rabbit jejunum, guinea pig ileum and on gastrointestinal transit in mice. Elemental analysis of the extract was also carried out. The aqueous extract of T. sessilifolius evoked a concentration dependent contraction of the rabbit jejunum and guinea pig ileum. The contractions evoked by the extract were not attenuated either by atropine or mepyramine, but they were completely blocked by verapamil. The elemental analysis revealed the presence of Mg, Zn, Fe, Cu, and very high concentration of Ca. The intraperitoneal LD50 in mice was found to be 1500 mg/kg. The aqueous extract of T. sessilifoliius possesses active components that may be mediating the observed biological activity through calcium mobilization.  相似文献   

8.
The aim of this paper was to investigate the mechanism(s) involved in the sodium oxalate pro-oxidative activity in vitro and the potential protection by diphenyl diselenide ((PhSe)(2)) and diphenyl ditelluride ((PhTe)(2)) using supernatants of homogenates from brain, liver and kidney. Oxalate causes a significant increase in the TBARS (thiobarbituric acid reactive species) production up to 4mmol/l and it had antioxidant activity from 8 to 16mmol/l in the brain and liver. Oxalate had no effect in kidney homogenates. The difference among tissues may be related to the formation of insoluble crystal of oxalate in kidney, but not in liver and brain homogenates. (PhSe)(2) and (PhTe)(2) reduced both basal and oxalate-induced TBARS in rat brain homogenates, whereas in liver homogenates they were antioxidant only on oxalate-induced TBARS production. (PhSe)(2) showed a modest effect on renal TBARS production, whereas (PhTe)(2) did not modulate TBARS in kidney preparations. Oxalate at 2mmol/l did not change deoxyribose degradation induced by Fe(2+) plus H(2)O(2), whereas at 20mmol/l it significantly prevents its degradation. Oxalate (up to 4mmol/l) did not alter iron (10micromol/l)-induced TBARS production in the brain preparations, whereas at 8mmol/l onwards it prevents iron effect. In liver preparations, oxalate amplifies iron pro-oxidant activity up to 4mmol/l, preventing iron-induced TBARS production at 16mmol/l onwards. These results support the antioxidant effect of organochalcogens against oxalate-induced TBARS production. In addition, our results suggest that oxalate pro- and antioxidant activity in vitro could be related to its interactions with iron ions.  相似文献   

9.
The rectum possesses electric activity in the form of pacesetter (PPs) and action potentials (APs). In recent studies we suggested that the waves are not initiated by the extrarectal autonomic innervation but might be triggered by a 'rectosigmoid pacemaker' and are transmitted in the rectal wall through the rectal musculature and not the enteric nerve plexus. To investigate whether the rectal waves are transmitted through the circular or longitudinal muscle layer, the rectum of 18 mongrel dogs was exposed under anesthesia through an abdominal incision. Three electrodes were applied to the rectal wall (longitudinal muscle layer) and another 3 electrodes to the circular muscle; the latter was exposed by splitting apart the fibers of the longitudinal muscle. Rectal electric activity and pressure were recorded from the 6 electrodes before and after performing individual myotomy of the rectal longitudinal (9 dogs), circular (9 dogs), and then the whole muscle layers (18 dogs). The myotomy was performed proximal to and between the electrodes. Pacesetter (PPs) and action potentials (APs) were recorded from the 3 electrodes on the longitudinal muscle but no waves were registered from those on the circular muscle. After longitudinal muscle myotomy was performed between electrodes 1 and 2, PPs and APs were recorded from electrode 1 but not 2 and 3 and when performed proximally to electrode 1, no waves were registered. The rectal pressure increased concomitantly with occurrence of APs. Circular muscle myotomy effected no change in the rectal electric activity recorded from the 3 electrodes applied to the longitudinal muscle. In total muscle myotomy, the electric waves were recorded from the electrodes proximal but not distal to the myotomy. We propose that the motile activity of the rectal longitudinal muscle is initiated by the electric activity which appears to be triggered by the rectosigmoid pacemaker, while that of the circular muscle fibers is believed to be initiated by the stretch reflex induced by rectal distension. This concept is evidenced not only by the current findings but also by the histologic structure of the rectal musculature being of the unitary type of smooth muscles.  相似文献   

10.
The relationship between neurogenic responses of longitudinal and circular muscle was studied by measuring contractions and EMG or nonadrenergic, non-cholinergic (NANC) relaxations and NANC inhibitory junction potentials in different preparations of the guinea-pig ileum. NANC relaxation of longitudinal muscle was observed also without any preceding or concomitant circular muscle contraction ruling out the possibility that the latter might be the cause of the NANC relaxation. Circular muscle twitches or powerful contractions were absent if there was no preceding neurogenic or myogenic excitation of longitudinal muscle; in preparations with myenteric plexus-longitudinal muscle layers removed only small residual responses were seen although still under neurogenic influences. Thus excitation of longitudinal muscle seemed a prerequisite for synchronized and powerful contractions of circular muscle to occur. Cholinergic contraction and NANC relaxation of longitudinal muscle evoked by field stimulation were partly inhibited if the submucous plexus was also present suggesting the involvement of a more complex neuronal circuitry in these responses.  相似文献   

11.
Rhythmic contractions generating transit in the digestive tract are paced by a network of cells called interstitial cells of Cajal (ICC) found in the myenteric plexus (MP). ICC generate cyclic depolarizations termed "slow waves" that are passively transmitted to the smooth muscle to initiate contractions. The opening of l-Ca(2+) channels are believed to be primarily responsible for the influx of calcium generating a contraction in smooth muscle. However, l-Ca(2+) channels are not thought to be important in generating the pacing current found in ICC. Using intact segments of circular (CM) and longitudinal (LM) muscle from wild-type mice and mice lacking c-kit kinase (W/W(V)), we found that l-Ca(2+) channel currents are required for pacing at normal frequencies to occur. Application of 1 muM nicardipine caused a significant decrease in contraction amplitude and frequency in LM and CM that was successfully blocked with BAY K 8644. Nicardipine also abolished the pacing gradient found throughout the intestines, resulting in a uniform contraction frequency of 30-40/minute. Stimulating l-Ca(2+) channels with BAY K 8644 neither removed nor recovered the pacing gradient. W/W(V) mice, which lack ICC-MP, also exhibited a pacing gradient in LM. Application of nicardipine to LM segments of W/W(V) mouse intestine did not reduce pacing frequency, and in jejunum, resulted in a slight increase. BAY K 8644 did not affect pacing frequency in W/W(V) tissue. In conclusion, we found that l-Ca(2+) channel activity was required for normal pacing frequencies and to maintain the pacing frequency gradient found throughout the intestines in wild-type but not in W/W(V) mouse intestine.  相似文献   

12.
Mono- and di-substituted analogs of dynorphin-A(1-13) (Dyn-A(1-13)) were synthesized by the solid-phase procedure. The products were purified and analyzed for their ability to inhibit the electrically evoked contractions of the guinea pig ileum (GPI) and mouse vas deferens (MVD) and to compete with the binding of [3H]etorphine ([3H]ET) and [3H]ethylketocyclazocine ([3H]EKC) to homogenates of rat brain (mu-, delta-, kappa 2-receptors) and guinea pig cerebellum (kappa-receptor), respectively. Introduction of Ala in position 2 caused a drastic decrease in the activity of the peptide on the smooth muscle preparations (IC50 of 104 and 2.250 nM in the GPI and the MVD as compared with 0.7 and 21 nM for the parent peptide, respectively). Conversely, this analog retained much of the opioid binding activity of Dyn-A(1-13) (relative binding potencies of 15 and 72% for the displacement of [3H]ET and [3H]EKC, respectively). The replacement of Phe4 by Trp also caused drastic decreases in the activity of the peptide in the smooth muscle preparations (relative potencies of 0.8 and 8.8% on the GPI and MVD) while much of the binding potency to the opioid receptors was retained (31 and 67% for the displacement of [3H]ET and [3H]EKC, respectively). [Ala2,Trp4]-Dyn-A(1-13) was the least potent peptide tested in the smooth muscle assays (relative potencies: 0.1 and 0.6%). However, this latter analog still retained some opioid binding activity in the displacement of [3H]ET to rat brain homogenates (3%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The role of vascular gap junctions in the conduction of intercellular Ca2+ and vasoconstriction along small resistance arteries is not entirely understood. Some depolarizing agents trigger conducted vasoconstriction while others only evoke a local depolarization. Here we use a novel technique to investigate the temporal and spatial relationship between intercellular Ca2+ signals generated by smooth muscle action potentials (APs) and vasoconstriction in mesenteric resistance arteries (MA). Pulses of exogenous KCl to depolarize the downstream end (T1) of a 3 mm long artery increased intracellular Ca2+ associated with vasoconstriction. The spatial spread and amplitude of both depended on the duration of the pulse, with only a restricted non-conducting vasoconstriction to a 1 s pulse. While blocking smooth muscle cell (SMC) K+ channels with TEA and activating L-type voltage-gated Ca2+ channels (VGCCs) with BayK 8644 spread was dramatically facilitated, so the 1 s pulse evoked intercellular Ca2+ waves and vasoconstriction that spread along an entire artery segment 3000 μm long. Ca2+ waves spread as nifedipine-sensitive Ca2+ spikes due to SMC action potentials, and evoked vasoconstriction. Both intercellular Ca2+ and vasoconstriction spread at circa 3 mm s−1 and were independent of the endothelium. The spread but not the generation of Ca2+ spikes was reversibly blocked by the gap junction inhibitor 18β-GA. Thus, smooth muscle gap junctions enable depolarization to spread along resistance arteries, and once regenerative Ca2+-based APs occur, spread along the entire length of an artery followed by widespread vasoconstriction.  相似文献   

14.
Nicol GD 《生理学报》2008,60(5):603-604
Because nerve growth factor(NGF)is elevated during inflammation,plays a causal role in the initiation of hyperalgesia  相似文献   

15.
Tentacle extract of A.rabanchatu, produced a fall of blood pressure in cat, rat and guinea pig. Hypotension produced in cat remained unantagonized by blockers of acetylcholine, histamine and 5-HT. On isolated guinea pig heart, the extract significantly reduced the rate and amplitude of contraction leading to irreversible cardiac arrest. In cats and rats, the respiratory rate and amplitude was decreased significantly and resulted in temporary apnoea. The extract also produced vasoconstriction in perfused rat hindquarter preparation and increased cutaneous capillary permeability. The extract produced contraction in several isolated smooth muscle preparations. Contraction on guinea pig ileum was partly antagonized by atropine and cyproheptadine. On isolated rat phrenic nerve diaphragm and chick biventer cervicis, the extract produced irreversible blockade of the electrical stimulation-induced twitch responses. Haemolytic and myonecrotic activity was exhibited by the extract. LD50 was found to be 7.7 mg/kg (iv, mice).  相似文献   

16.
The relationship between slow waves and peristaltic reflexes has not been well analyzed. In this study, we have recorded the electrical activity of slow waves together with that generated by spontaneous peristaltic contractions at 240 extracellular sites simultaneously. Recordings were made from five isolated tubular and six sheet segments of feline duodenum superfused in vitro. In all preparations, slow waves propagated as broad wave fronts along the longitudinal axis of the preparation in either the aborad or the orad direction. Electrical potentials recorded during peristalsis (peristaltic waves) also propagated as broad wave fronts in either directions. Peristaltic waves often spontaneously stopped conducting (46%), in contrast to slow waves that never did. Peristaltic waves propagated at a lower velocity than the slow waves (0.98 +/- 0.25 and 1.29 +/- 0.28 cm/s, respectively; P < 0.001; n = 24) and in a direction independent of the preceding slow wave direction (64% in the same direction, 46% in the opposite direction). In conclusion, slow waves and peristaltic waves in the isolated feline duodenum seem to constitute two separate electrical events that may drive two different mechanisms of contraction in the small intestine.  相似文献   

17.
The contribution of protein kinase C to the contraction by oxytocin of rat uterine longitudinal smooth muscle in Ca(2+)-free solution was investigated. Immunological analysis revealed that type II (beta) and III (alpha) protein kinase C subspecies were present in rat uterine smooth muscle. The pretreatment of a diacylglycerol kinase inhibitor R59022 to accumulate diacylglycerol potentiated the Ca(2+)-independent contraction. The contractile activity was diminished with the depletion of protein kinase C, when the contraction was evoked repeatedly by oxytocin during the prolonged exposure to a tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggested the involvement of protein kinase C in oxytocin-induced contraction in Ca(2+)-free solution.  相似文献   

18.
The relationship of NADH/NAD to O2 consumption with respect to the different phases of contraction in vascular smooth muscle in response to a maximal depolarizing concentration of KCl was investigated. The NADH bound to cellular proteins could be distinguished from free NADH in whole tissue homogenates. Evidence suggested that the NADH was bound to pyruvate dehydrogenase and perhaps to other dehydrogenases since binding paralleled the changes in the activity of pyruvate dehydrogenase with contraction. The measured changes in NADH were attributed to that within the mitochondrial compartment since the contribution of reducing equivalents within the cytoplasmic compartment was negligible. During the phase of contraction in which force was initially being generated and at which O2 consumption was the highest, there was a net increase in NADH/NAD. After stable isometric force was maintained, at which time O2 consumption had returned to slightly above the basal pre-contraction level, there was a net decrease in NADH/NAD. Previous evidence indicates the phosphorylation potential (ATP/ADP) may decrease during this phase of contraction. It is concluded that contraction of vascular smooth muscle is accompanied by a changing pool of reducing equivalents. Factors which govern O2 consumption may change during the different phases of muscle contraction.  相似文献   

19.
During continuous peristaltic reflex activity of the isolated guinea-pig ileum a model stress stimulus, elevated intraluminal pressure (120 mm H2O) plus increased longitudinal tension (3 g) was applied for 2 min. The resulting inhibition of peristalsis outlasted the initial stimulus by several min. The inhibitory interval was shortened or abolished in the presence of naloxone (0.5 μM), an opiate receptor antagonist, or in the preparations made acutely tolerant to morphine. This seems to suggest an involvement of endorphins. An inhibition of endogenous prostaglandin synthesis by indomethacin (5 μM) decreased the amplitude of peristaltic longitudinal muscle contractions, and these contractions were increased in response to the stress stimulus in the presence of naloxone. Thus the response of the guinea-pig ileum to stress stimulation could be profoundly modified by an interference with endorphin and prostaglandin systems.  相似文献   

20.
Mercier AJ  Lee J 《Peptides》2002,23(10):1751-1757
Proctolin (Arg-Tyr-Leu-Pro-Thr-OH) and crayfish peptide "DF(2)" (Asp-Arg-Asn-Phe-Leu-Arg-Phe-NH(2)) enhance spontaneous contractions of isolated crayfish hindguts. Both peptides increase the frequency and amplitude of spontaneous, rapid contractions. Proctolin induces a slow contraction, which gives the appearance of an increase in overall tonus. DF(2) has no such effect. To determine whether the peptides affect both longitudinal and circular muscles, hindguts were cut into longitudinal strips and into rings, and contractions were recorded from each. The longitudinal strips generated only rapid contractions, and both peptides increased the frequency and amplitude of such contractions without significantly altering tonus. Rapid contractions were observed in only 1 of 14 preparations of rings. Proctolin induced slow contractions in the rings, and DF(2) had no such effect. The results indicate that neuropeptides have different effects on circular and longitudinal muscles of hindgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号