首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
To analyse nodular antioxidant enzyme expression in response to salt stress, Phaseolus vulgaris genotype BAT477 was inoculated with reference strain CIAT899, and treated with 50 mM NaCl. Plant growth, nodulation and nitrogen fixing activity were analysed. Results showed that: (1) all parameters, particularly in nodules, were affected by salt treatments, and (2) confirmed preferential growth allocation to roots. The ARA was significantly decreased by salt treatments. Protein dosage confirmed that nodules were more affected by salt treatment than were roots. We analysed superoxide dismutase, catalase, ascorbate peroxidase and peroxidase in nodules, roots and a free rhizobial strain. Our results indicated that SOD and CAT nodular isozymes had bacterial and root origins. The SOD expressed the same CuZn, Fe and Mn SOD isoforms in nodules and roots, whereas in free rhizobia we found only one Fe and Mn SOD. APX and POX nodule and root profiles had only root origins, as no rhizobial band was detected. Under salt stress, plant growth, nitrogen fixation and activities of antioxidant defense enzymes in nodules were affected. Thus, these enzymes appear to preserve symbiosis from stress turned out that NaCl salinity lead to a differential regulation of distinct SOD and POX isoenzyme. So their levels in nodules appeared to be consistent with a symbiotic nitrogen fixing efficiency hypothesis, and they seem to function as the molecular mechanisms underlying the nodule response to salinity.  相似文献   

2.
The accumulation of H2O2 by NaCl was observed in the roots of rice seedlings. Treatment with NaCl caused an increase in the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) and the expression of OsAPX and OsGR in rice roots. Exogenously applied H2O2 also enhanced the activities of APX and GR and the expression of OsAPX and OsGR in rice roots. The accumulation of H2O2 in rice roots in response to NaCl was inhibited by the NADPH oxidase inhibitors, diphenyleneiodonium chloride (DPI) and imidazole (IMD). However, DPI, IMD, and dimethylthiourea, a H2O2 trap, did not reduce NaCl-enhanced activities of APX and GR and expression of OsAPX and OsGR. It appears that H2O2 is not involved in the regulation of NaCl-induced APX and GR activities and OsAPX and OsGR expression in rice roots.  相似文献   

3.
APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.  相似文献   

4.
Summary. Ascorbate peroxidase (EC 1.11.1.11), a heme-containing homodimeric protein, is a hydrogen peroxide-scavenging enzyme, playing an important role in plants in order to protect them from oxidative stress, thus adverting cellular damage. Several ascorbate peroxidase isoenzymes have been reported but the understanding of their physiological role still depends on a better knowledge of their precise localisation within plant organs. Immunocytochemistry techniques were performed in order to elucidate the peroxisomal and cytosolic ascorbate peroxidase distribution within tissues of leaves and sprouts of potato plants. The peroxisomal isoenzyme was found to have a broad distribution in sprouts, but a differential one in leaves, being restricted to the spongy parenchyma. This differential expression may be associated to the mesophyll asymmetry and the diverse physiological processes that occur in it. The cytosolic isoenzyme was not detected in leaves under the used conditions, probably because it is present in low amounts in these tissues. The results obtained in sprouts were at least curious: cytosolic ascorbate was found to be adjacent to the amyloplasts. Given these results, it is possible to state that apart from their similarity, these two isoenzymes reside in different organelles and seem to take part in different physiological processes as suggested by their organ- and tissue-specific distribution. Correspondence and reprints: Plant Functional Biology Department, Institute for Cell and Molecular Biology, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.  相似文献   

5.
It is known that highly reactive oxygene species produced during normal cellular metabolism represent a powerful effector mechanism against parasites. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) belong to the main defense anti-oxidants that prevent the formation of new free radical species. The aim of this study was to assess the activities of SOD and GPx in cattle tissues infected with Taenia saginata. We observed a statistically significant increase in the SOD and GPx activities (p = 0.00003, 0.00008, respectively, Student’s t-test) in skeletal muscles infected with T. saginata in spectrophotometric analysis. With the use of western blot technique, SOD synthesis stimulation has appeared in the host tissues containing cysticerci in contrast with the control samples. There was no statistically significant increase in the GPx band intensity observed in the studied samples in comparison to controls (Gene Tools Version 4.01 program). These results support the significance of anti-oxidant processes in host defense mechanism during parasitic infections.  相似文献   

6.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

7.
Kim YH  Lee Y  Kim S  Yeom J  Yeom S  Seok Kim B  Oh S  Park S  Jeon CO  Park W 《Proteomics》2006,6(23):6181-6193
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm conditions than under planktonic conditions. An analysis of their growth phase-dependent gene expression indicated that a high level of the sodC expression occurred during the stationary phase and that the expression of the tpx gene was strongly induced only during the exponential growth phase. Exogenous hydrogen peroxide reduced the aerobic growth of the STEC sodC and tpx mutants by more than that of their parental strain. The two mutants also displayed significant reductions in their attachment to both biotic (HT-29 epithelial cell) and abiotic surfaces (polystyrene and polyvinyl chloride microplates) during static aerobic growth. However, the growth rates of both wild-type and mutants were similar under aerobic growth conditions. The formation of an STEC biofilm was only observed with the wild-type STEC cells in glass capillary tubes under continuous flow-culture conditions compared with the STEC sodC and tpx mutants. To the best of our knowledge, this is the first mutational study to show the contribution of sodC and tpx gene products to the formation of an E. coli O157:H7 biofilm. These results also suggest that these biofilms are physiologically heterogeneous and that oxidative stress defenses in both the exponential and stationary growth stages play important roles in the formation of STEC biofilms.  相似文献   

8.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

9.
Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday.  相似文献   

10.
This investigation was designed to compare the differential stress tolerance in young thalli of two similar intertidal red seaweeds, Grateloupia turuturu Yamada and Palmaria palmata Kuntze, and to identify whether the invasive alga G. turuturu was more stress tolerant than P. palmata to cope with adverse environmental conditions. To do so, we measured the production of reactive oxygen caused by methyl viologen (MV) by assessing the oxidation of dichlorohydrofluorescein (DCFH) to dichlorofluorescein (DCF), the activities of reactive oxygen scavenging enzymes and the changes of the optimal fluorescence quantum yield (Fv/Fm) when the thalli of the two species were exposed to oxidative stresses caused by the addition of MV, H2O2, 3(3, 4-dichlorophenyl)-1,1-dimethyl urea (DCMU), heavy metal, changes of salinities, heat and freezing. Results demonstrated that the activities of superoxide dismutase (SOD) and peroxidase (POD) in G. turuturu were much higher than in P. palmata. Fv/Fm in G. turuturu was less sensitive than that in P. palmata to MV, H2O2, DCMU, heavy metal, salinity and heat stress, indicating that G. turuturu could be better acclimatized to changing environments and thus had a higher threshold for oxidative stress than P. palmata. G. turuturu was shown to be more sensitive to freezing treatment (− 20 °C), which explained why the appearance of G. turuturu was rarely reported in colder water environments.  相似文献   

11.
12.
Tarantino D  Vannini C  Bracale M  Campa M  Soave C  Murgia I 《Planta》2005,221(6):757-765
The production and characterization of Arabidopsis plants containing a transgene in which the Arabidopsis tAPX is inserted in antisense orientation, is described. tAPX activity in these transgenic tAPX plants is around 50% of control level. The tAPX antisense plants are phenotypically indistinguishable from control plants under normal growth conditions; they show, however, enhanced sensitivity to the O2-generating herbicide, Paraquat. Interestingly, the tAPX antisense plants show enhanced symptoms of damage when cell death is triggered through treatment with the nitric oxide-donor, SNP. These results are in accordance with the ones recently obtained with transgenic plants overexpressing tAPX; altogether, they suggest that tAPX, besides the known ROS scavenging role, is also involved in the fine changes of H2O2 concentration during signaling events.  相似文献   

13.
The effects of salinity (10, 17 and 35 ppt) on O2 consumption, CO2 release and NH3 excretion by crabs and oxidative stress parameters and antioxidant defenses of its tissues were reported. An increase in salinity caused a decrease in O2 consumption and CO2 release and an increase in ammonia excretion by crabs. Lipid peroxidation, protein carbonyl, H2O2 levels and total antioxidant capacity of the tissues elevated significantly at 35 ppt salinity except in abdominal muscle where H2O2 content was low. Ascorbic acid content of tissues was higher at 17 ppt salinity than at 10 and 35 ppt salinities. With increasing salinity, a gradual decrease in SOD, an increase in catalase, no change in GPx and a decrease followed by an increase in GR activities were recorded for abdominal muscle. While for hepatopancreas, an increase followed by a decrease in SOD and catalase, decrease in GPx and GR activities were noticed with increasing salinity. In the case of gills, a decrease followed by an increase in SOD, a decrease in catalase and GPx and an increase in GR activities were noted when the salinity increased from 10 ppt to 35 ppt. These results suggest that salinity modulation of oxidative stress and antioxidant defenses in Scylla serrata is tissue specific.  相似文献   

14.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid of the chloroplast play a principle role in detoxifying hydrogen peroxide (H2O2) generated in photosystem I; however, once the ascorbate is depleted, the enzyme is attacked by H2O2 and rapidly loses its activity. Here, we report that radical transfer across the porphyrin moiety and amino acid residues in the reaction intermediate and H2O2-mediated enzyme inactivation involve cooperative interactions of the Cys26, Trp35, and Cys126 residues of stromal APX. The wild-type enzyme had a half-time of inactivation of <10 s, while the triple mutant of the three residues retained 50% of the initial activity after H2O2 treatment for 3 min. The H2O2 tolerance of this mutant was comparable to that of the H2O2-tolerant APX isoform localized in the cytosol.  相似文献   

15.
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号