共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wilma M. Frederiks Frans Marx Cornelis J. F. Van Noorden 《The Histochemical journal》1988,20(11):624-628
Summary Creatine kinase (ec 2.7.3.2) activity was demonstrated in rat myocardium using a polyvinyl alcohol-containing incubation medium and auxiliary enzymes. The activity was quantified by microdensitometry using both endpoint measurements and kinetic measurements. Control reactions were performed in the absence of creatine phosphate and ADP.The linear regression lines of the absorbances of reduced Nitro BT at the isobestic wavelength (585 nm) on incubation time were highly significant for both endpoint and kinetic measurements. The activity obtained from endpoint measurements was about 40% lower. This was caused by loss of the formazan reaction product from the tissue sections when the incubation medium was removed at the end of the reaction. The relationship between creatine kinase activity (test minus control reaction) and section thickness was not linear for either myocardium or skeletal muscle; control reactions, however, showed linear relationships with section thickness for both tissues. Limited penetration of auxiliary enzymes into the sections may be responsible for this disporportionality. Therefore, care should be taken in the interpretation of quantitative data obtained with different tissues.In conclusion, multi-step enzyme reactions can be used for quantitative histochemical purposes provided it is taken into account that the reactivity is not proportional to section thickness. 相似文献
3.
4.
A mutant of dimeric rabbit muscle creatine kinase (CK), in which six residues (residues 2-7) at the N-terminal were removed by the PCR method, was studied to assess the role of these residues in dimer cohesion and to determine the structural stability of the protein. The specific activity of the mutant was 70.39% of that of the wild-type CK, and the affinity for Mg-ATP and CK substrates was slightly reduced compared with the wild-type protein. The structural stability of the mutant was investigated by a comparative equilibrium urea denaturation study and a thermal denaturation study. The data acquired by intrinsic fluorescence and far-UV circular dichroism (CD) during urea unfolding indicated that, the secondary and tertiary structures of the mutant were more stable than those of wild-type CK. Furthermore, results of 8-anilino-1-naphthalene-sulfonic acid (ANS) fluorescence demonstrated that the hydrophobic surface of the mutant CKND(6) was more stable during urea titration. Data from size exclusion chromatography (SEC) experiments indicated that deletion of the six N-terminal residues resulted in a relatively loose molecular structure, but the dissociation of the mutant CKND(6) occurred later during the unfolding process than for wild-type CK. Consistent with this result, the differential scanning calorimetry (DSC) profiles demonstrated that the thermal stability of the enzyme was increased by removal of the six N-terminal residues. We conclude that a more stable quaternary structure was obtained by deletion of the six residues from the N-terminal of wild-type CK. 相似文献
5.
Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. 总被引:6,自引:10,他引:6 下载免费PDF全文
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors. 相似文献
6.
7.
8.
9.
Despite the energetic flux being much lower in smooth muscle compared to striated muscles (such as the heart and skeletal muscle) creatine kinase (CK) has been found present and active in all smooth muscles studied to date. A complete CK circuit has been identified, with CK found in the mitochondria, contractile elements, membrane pumps and the cytoplasm. CK isoenzymes are coupled to many cellular energetic processes and appears to be involved in energy production and consumption by acting as an energy transducer. The CK system responds to pathological insults and development (e.g. hypertrophy and gestation respectively) by changes in sub-cellular distribution localization, isoenzymes, and specific activity. The conclusion from these observations is that creatine kinase is intimately involved in the energetic system of smooth muscle.Abbreviations CK
creatine kinase
- Mi-CK
mitochondrial creatine kinase
- Cr
creatine
- PCr
phosphocreatiner
- NMR
nuclear magnetic resonance
- SHR
spontaneously hypertensive rat
- -GPA
-guanidinopropionic acid 相似文献
10.
Creatine kinase from rhesus monkey skeletal muscle is activated by acetate and other short chain fatty acids. Activation is associated with lower Km and higher Vmax values at less than saturating substrate concentrations but does not occur when both substrates are saturating. No co-operativity between subunits is evident in the activation process. It appears that acetate promotes the mutual enhancement by substrates in their binding by inducing the optimum enzyme conformation normally associated with substrate saturation. Conservation of this activation effect through the evolution of the phosphagen kinases implies that it may well be of physiological significance. 相似文献
11.
12.
13.
14.
Arginine and creatine kinase activities in different muscles are compared with calculated maximum rates of ATP turnover. The magnitude of the kinase activities decreases in the following order: anaerobic muscles and vertebrate skeletal muscles greater than heart muscle greater than insect flight muscle. The maximum activity of phosphagen kinases (i.e. creatine kinase and arginine kinase), in the direction of phosphagen formation, is lower than the calculated maximum rate of ATP turnover in insect flight muscle or rat heart. 相似文献
15.
Mutation of the BRCA1 tumor suppressor gene predisposes women to hereditary breast and ovarian cancers. BRCA1 forms a heterodimer with BARD1. The BRCA1/BARD1 heterodimer has ubiquitin ligase activity, considered to play crucial roles in tumor suppression and DNA damage response. Nevertheless, relevant BRCA1 substrates are poorly defined. We have developed a new approach to systematically identify the substrates of ubiquitin ligases by identifying proteins that display an enhanced incorporation of His-tagged ubiquitin upon ligase coexpression; using this method, we identified several candidate substrates for BRCA1. These include scaffold attachment factor B2 (SAFB2) and Tel2 as well as BARD1. BRCA1 was found to enhance SAFB protein expression and induce Tel2 nuclear translocation. Identification of the ubiquitination substrates has been a major obstacle to understanding the functions of ubiquitin ligases. The quantitative proteomics approach we devised for the identification of BRCA1 substrates will facilitate the identification of ubiquitin ligase-substrate pairs. 相似文献
16.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells. 相似文献
17.
Identification of glycogen phosphorylase and creatine kinase as calpain substrates in skeletal muscle 总被引:1,自引:0,他引:1
Purintrapiban J Wang M Forsberg NE 《The international journal of biochemistry & cell biology》2001,33(5):531-540
The goal of this study was to identify calpain substrates in muscle cells. Our hypothesis was that the yeast two-hybrid method could be used to identify novel calpain substrates. To accomplish this, native mu- and m-calpains, as well as a variety of calpain DNA fragments, were expressed in yeast cells and used to screen for binding proteins in a human skeletal muscle cDNA library. Calpain constructs that were used in the screening process included native mu- and m-calpains, a dominant negative (DN) m-calpain (i.e. active site modified), N-terminal truncated DN m-calpain (i.e. autolyzed DN-m-calpain) and, finally, an N- and C-terminal truncated m-calpain (i.e. autolyzed DN-m-calpain lacking a calcium-binding domain). Yeast cells were transformed using yeast two-hybrid expression vectors containing the different calpain constructs as "baits". Beta-galactosidase activity was assayed as an index of interaction between calpain and its potential target proteins. From this analysis, four clones (Ca2+-ATPase, novel nebulin-related protein (N-RAP), creatine kinase and glycogen phosphorylase) were recovered. Two of these, creatine kinase and glycogen phosphorylase, were selected for further study. In in-vitro assays, calpain was able to partially digest both proteins, suggesting that both creatine kinase and glycogen phosphorylase are natural calpain substrates. 相似文献
18.
Elsewhere in this book the important role of creatine kinase and its metabolites in high energy phosphate metabolism and transport in muscle cells has been reviewed. The emphasis of this review article is mainly on the compartmentalized catalytic activity of adenylate kinase in relation to creatine kinase isoenzymes, and other enzymes of energy production and utilization processes in muscle cells. At present the role of adenylate kinase is considered simply to equilibrate the stores of adenine nucleotides. Recent studies by us and others, however, suggest an entirely new view of the metabolic importance of adenylate kinase in muscle function. This view offers a closer interaction between adenylate kinase and creatine kinase, in the process of energy production (at mitochondrial and glycolytic sites), and energy utilization (at myofibrillar sites and perhaps other sites such as sarcoplasmic reticular, sarcolemmal membrane, etc.), thus being an integral part of the high energy phosphate transport system.This review article opens up the opportunity to further examine the metabolism of adenine nucleotides and their fluxes through the adenylate kinase system in intact muscle cells. Using an intact system, having a preserved integrity of their compartmentalized enzymes and substrates, is essential in clarifying the exact role of adenylate kinase in high energy phosphate metabolism in muscle cells. 相似文献
19.
Muscle creatine kinase (CK) is a crucial enzyme in energy metabolism, and it exists in two forms, the reduced form (R-CK) and the oxidized form (O-CK). In contrast with R-CK, O-CK contained an intrachain disulfide bond in each subunit. Here we explored the properties of O-CK and its regulatory role on muscle CK. The intrachain disulfide bond in O-CK was demonstrated to be formed between Cys(74) and Cys(146) by site-directed mutagenesis. Biophysical analysis indicated that O-CK showed decreased catalytic activity and that it might be structurally unstable. Further assays through guanidine hydrochloride denaturation and proteolysis by trypsin and protease K revealed that the tertiary structure of O-CK was more easily disturbed than that of R-CK. Surprisingly, O-CK, unlike R-CK, cannot interact with the M-line protein myomesin through biosensor assay, indicating that O-CK might have no role in muscle contraction. Through in vitro ubiquitination assay, CK was demonstrated to be a specific substrate of muscle ring finger protein 1 (MURF-1). O-CK can be rapidly ubiquitinated by MURF-1, while R-CK can hardly be ubiquitinated, implying that CK might be degraded by the ATP-ubiquitin-proteasome pathway through the generation of O-CK. The results above were further confirmed by molecular modeling of the structure of O-CK. Therefore, it can be concluded that the generation of O-CK was a negative regulation of R-CK and that O-CK might play essential roles in the molecular turnover of MM-CK. 相似文献
20.
Walzel B Speer O Boehm E Kristiansen S Chan S Clarke K Magyar JP Richter EA Wallimann T 《American journal of physiology. Endocrinology and metabolism》2002,283(2):E390-E401
Despite the pivotal role of creatine (Cr) and phosphocreatine (PCr) in muscle metabolism, relatively little is known about sarcolemmal creatine transport, creatine transporter (CRT) isoforms, and subcellular localization of the CRT proteins. To be able to quantify creatine transport across the sarcolemma, we have developed a new in vitro assay using rat sarcolemmal giant vesicles. The rat giant sarcolemmal vesicle assay reveals the presence of a specific high-affinity and saturable transport system for Cr in the sarcolemma (Michaelis-Menten constant 52.4 +/- 9.4 microM and maximal velocity value 17.3 +/- 3.1 pmol x min(-1) x mg vesicle protein(-1)), which cotransports Cr into skeletal muscle together with Na(+) and Cl(-) ions. The regulation of Cr transport in giant vesicles by substrates, analogs, and inhibitors, as well as by phorbol 12-myristate 13-acetate and insulin, was studied. Two antibodies raised against COOH- and NH(2)-terminal synthetic peptides of CRT sequences both recognize two major polypeptides on Western blots with apparent molecular masses of 70 and 55 kDa, respectively. The highest CRT expression occurs in heart, brain, and kidney, and although creatine kinase is absent in liver cells, CRT is also found in this tissue. Surprisingly, immunofluorescence staining of cultured adult rat heart cardiomyocytes with specific anti-CRT antibodies, as well as cell fractionation and cell surface biotinylation studies, revealed that only a minor CRT species with an intermediate molecular mass of approximately 58 kDa is present in the sarcolemma, whereas the previously identified major CRT-related protein species of 70 and 55 kDa are specifically located in mitochondria. Our studies indicate that mitochondria may represent a major compartment of CRT localization, thus providing a new aspect to the current debate about the existence and whereabouts of intracellular Cr and PCr compartments that have been inferred from [(14)C]PCr/Cr measurements in vivo as well as from recent in vivo NMR studies. 相似文献