首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Stimulation of lymphocytes by specific antigens is followed by the activation of different signal transduction mechanisms, such as alterations in the cytoplasmic levels of Ca(2+), H(+) and variations in membrane potential. To study interrelationships among these parameters, changes in pHi and Ca(2+) were measured with the fluorescent probes BCECF and Fura-2 in freshly isolated blood human lymphocytes. Moreover, membrane potential qualitative alterations were recorded with the fluorescent dye bis-oxonol. In a bicarbonate-free medium, cell alkalinization with NH(4)Cl slightly decreased intracellular Ca(2+) concentration ([Ca(2+)](i)) due to efflux of Ca(2+) from the cell. In contrast, an elevation of pHi induced with 4-AP increased [Ca(2+)](i), either in the presence or absence of external Ca(2+). The increase in Ca(2+)-free medium is likely to be due to Ca(2+) release from thapsigargin and caffeine-independent intracellular stores. Both 4-AP or NH(4)Cl induced a plasma membrane depolarisation, although with different kinetics. The ionosphere ionomycin increased pHi, Ca(2+) levels and also induced membrane depolarisation. Together, these observations demonstrate a lack of correlation between the magnitude of changes in pHi and Ca(2+).  相似文献   

2.
Application of protein kinases A and C inhibitors to the prothoracic glands cells of the silkworm, Bombyx mori, resulted in slow and gradual increases in intracellular Ca(2+) ([Ca(2+)](i)). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic gland cells of B. mori suggests that these increases of [Ca(2+)](i) are mediated neither by voltage-gated Ca(2+) channels nor by intracellular Ca(2+) stores. Rather they result from slow Ca(2+) leak from plasma membrane Ca(2+) channels that are sensitive to agents that inhibit capacitative Ca(2+) entry and are abolished in the absence of extracellular Ca(2+). Okadaic acid, an inhibitor of PP1 and PP2A phosphatases, blocked the increase in [Ca(2+)](i) produced by the inhibitors of protein kinase A and C. The combined results indicate that the capacitative Ca(2+) entry channels in prothoracic gland cells of B. mori are probably modulated by protein kinases A and C.  相似文献   

3.
Store-operated Ca(2+) entry, stimulated by depletion of intracellular Ca(2+) pools, has not been fully elucidated in vascular smooth muscle cells of pig coronary arteries. Therefore, [Ca(2+)](i) was measured in cultured cells derived from extramural pig coronary arteries using the Fura-2/AM fluorometry. Divalent cation entry was visualized with the Fura-2 Mn(2+)-quenching technique. Ca(2+) stores were depleted either by repetitive stimulation of P2Y purinoceptors with ATP (10 micromol/L), or by the sarcoendoplasmic Ca(2+)-ATPase inhibitor 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ; 1 micromol/L) in Ca(2+)-free medium (EGTA 1 mmol/L). Addition of Ca(2+)(1 mmol/L) induced refilling of ATP-sensitive Ca(2+) stores and an increase in [Ca(2+)](i) in the presence of BHQ. Both could be significantly diminished by Ni(2+)(5 and 1mmol/L), La(3+)(10 micromol/L), Gd(3+)(10 micromol/L), and Mg(2+)(5.1 mmol/L). In contrast to the BHQ-mediated rise in [Ca(2+)](i), refilling of ATP-depleted stores was affected by neither flufenamate (0.1 mmol/L), nor by nitrendipine, nifedipine, and nisoldipine (each 1 micromol/L). The data suggest that after store depletion in pig coronary smooth muscle cells ATP and BHQ may converge on a common, Ni(2+)-, La(3+)-, Gd(3+)-, and Mg(2+)- sensitive Ca(2+) entry pathway, i.e. on a store-operated Ca(2+) entry. An additional contribution of the Na(+)/Ca(2+) exchanger cannot be excluded. Flufenamate-sensitive non-selective cation channels and dihydropyridine-sensitive L-type Ca(2+) channels are not involved in refilling of Ca(2+) stores after previous depletion by repetitive P2Y purinoceptor stimulation. The store-operated Ca(2+) entry in-between repetitive purinoceptor stimulation, i.e. in the absence of the agonist, may be responsible for the maintenance of agonist-induced rhythmic Ca(2+) responses.  相似文献   

4.
Fatty acids (FA) with at least 12 carbon atoms increase intracellular Ca(2+) ([Ca(2+)](i)) to stimulate cholecystokinin release from enteroendocrine cells. Using the murine enteroendocrine cell line STC-1, we investigated whether candidate intracellular pathways transduce the FA signal, or whether FA themselves act within the cell to release Ca(2+) directly from the intracellular store. STC-1 cells loaded with fura-2 were briefly (3 min) exposed to saturated FA above and below the threshold length (C(8), C(10), and C(12)). C(12), but not C(8) or C(10), induced a dose-dependent increase in [Ca(2+)](i), in the presence or absence of extracellular Ca(2+). Various signaling inhibitors, including d-myo-inositol 1,4,5-triphosphate receptor antagonists, all failed to block FA-induced Ca(2+) responses. To identify direct effects of cytosolic FA on the intracellular Ca(2+) store, [Ca(2+)](i) was measured in STC-1 cells loaded with the lower affinity Ca(2+) dye magfura-2, permeabilized by streptolysin O. In permeabilized cells, again C(12) but not C(8) or C(10), induced release of stored Ca(2+). Although C(12) released Ca(2+) in other permeabilized cell lines, only intact STC-1 cells responded to C(12) in the presence of extracellular Ca(2+). In addition, 30 min exposure to C(12) induced a sustained elevation of [Ca(2+)](i) in the presence of extracellular Ca(2+), but only a transient response in the absence of extracellular Ca(2+). These results suggest that at least two FA sensing mechanisms operate in enteroendocrine cells: intracellularly, FA (>/=C(12)) transiently induce Ca(2+) release from intracellular Ca(2+) stores. However, they also induce sustained Ca(2+) entry from the extracellular medium to maintain an elevated [Ca(2+)](i).  相似文献   

5.
Cheek TR  Thorn P 《Cell calcium》2006,40(3):309-318
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.  相似文献   

6.
Capsazepine is thought to be a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on different cell types is unclear. In human MG63 osteosarcoma cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. Capsazepine-induced [Ca(2+)](i) rise was partly reduced by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was composed of extracellular Ca(2+) influx and intracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of capsazepine on [Ca(2+)](i) was inhibited by 75%. Conversely, pretreatment with capsazepine to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. Overnight treatment with 1-100 microM capsazepine inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, capsazepine increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Capsazepine may be mildly cytotoxic.  相似文献   

7.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.  相似文献   

8.
Mycobacterium tuberculosis successfully parasitizes macrophages by disrupting the maturation of its phagosome, creating an intracellular compartment with endosomal rather than lysosomal characteristics. We have recently demonstrated that live M. tuberculosis infect human macrophages in the absence of an increase in cytosolic Ca(2+) ([Ca(2+)](c)), which correlates with inhibition of phagosome-lysosome fusion and intracellular viability. In contrast, killed M. tuberculosis induces an elevation in [Ca(2+)](c) that is coupled to phagosome-lysosome fusion. We tested the hypothesis that defective activation of the Ca(2+)-dependent effector proteins calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) contributes to the intracellular pathogenesis of tuberculosis. Phagosomes containing live M. tuberculosis exhibited decreased levels of CaM and the activated form of CaMKII compared with phagosomes encompassing killed tubercle bacilli. Furthermore, ionophore-induced elevations in [Ca(2+)](c) resulted in recruitment of CaM and activation of CaMKII on phagosomes containing live M. tuberculosis. Specific inhibitors of CaM or CaMKII blocked Ca(2+) ionophore-induced phagosomal maturation and enhanced the bacilli's intracellular viability. These results demonstrate a novel role for CaM and CaMKII in the regulation of phagosome-lysosome fusion and suggest that defective activation of these Ca(2+)-activated signaling components contributes to the successful parasitism of human macrophages by M. tuberculosis.  相似文献   

9.
10.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

11.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

12.
ATP induced a biphasic increase in the intracellular Ca(2+)concentration ([Ca(2+)](i)), an initial spike, and a subsequent plateau in A549 cells. Erythromycin (EM) suppressed the ATP-induced [Ca(2+)](i) spike but only in the presence of extracellular calcium (Ca(2+)(o)). It was ineffective against ATP- and UTP-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation and UTP-induced [Ca(2+)](i) spike, implying that EM perturbs Ca(2+) influx from the extracellular space rather than Ca(2+)release from intracellular Ca(2+) stores via the G protein-phospholipase C-Ins(1,4,5)P(3) pathway. A verapamil-sensitive, KCl-induced increase in [Ca(2+)](i) and the Ca(2+) influx activated by Ca(2+) store depletion were insensitive to EM. 3'-O-(4-benzoylbenzoyl)-ATP evoked an Ca(2+)(o)-dependent [Ca(2+)](i) response even in the presence of verapamil or the absence of extracellular Na(+), and this response was almost completely abolished by EM pretreatment. RT-PCR analyses revealed that P2X(4) as well as P2Y(2), P2Y(4), and P2Y(6) are coexpressed in this cell line. These results suggest that in A549 cells 1) the coexpressed P2X(4) and P2Y(2)/P2Y(4) subtypes contribute to the ATP-induced [Ca(2+)](i) spike and 2) EM selectively inhibits Ca(2+) influx through the P2X channel. This action of EM may underlie its clinical efficacy in the treatment of airway inflammation.  相似文献   

13.
Application of the tetradecapeptide mastoparan to the prothoracic glands (PGs) of the tobacco hornworm, Manduca sexta, and the silkworm, Bombyx mori, resulted in increases in intracellular Ca(2+) ([Ca(2+)](i)). In M. sexta, Gi proteins are involved in the mastoparan-stimulated increase in [Ca(2+)](i). However, there is no involvement of Gi proteins in the mastoparan-stimulated increase in [Ca(2+)](i) in prothoracic gland cells from B. mori. Unlike in M. sexta prothoracic glands, in B. mori prothoracic glands mastoparan increases [Ca(2+)](i) even in the absence of extracellular Ca(2+). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic glands of both insect species suggests that in M. sexta prothoracic glands, mastoparan's first site of action is influx of Ca(2+) through plasma membrane Ca(2+) channels while in B. mori prothoracic glands, mastoparan's first site of action is mobilization of Ca(2+) from intracellular stores. In M. sexta, the combined results indicate the presence of mastoparan-sensitive plasma membrane Ca(2+) channels, distinct from those activated by prothoracicotropic hormone or the IP(3) signalling cascade, that coordinate spatial increases in [Ca(2+)](i) in prothoracic gland cells. We propose that in B. mori, mastoparan stimulates Ca(2+) mobilization from ryanodine-sensitive intracellular Ca(2+) stores in prothoracic gland cells.  相似文献   

14.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

15.
Kuo SY  Jiann BP  Lu YC  Chang HT  Chen WC  Huang JK  Jan CR 《Life sciences》2003,72(15):1733-1743
2,2'-dithiodipyridine (2,2'-DTDP), a reactive disulphide that mobilizes Ca(2+) in muscle, induced an increase in cytoplasmic free Ca(2+)concentrations ([Ca(2+)](i)) in MG63 human osteosarcoma cells loaded with the Ca(2+)-sensitive dye fura-2. 2,2'-DTDP acted in a concentration-independent manner with an EC(50) of 50 microM. The Ca(2+) signal comprised an initial spike and a prolonged increase. Removing extracellular Ca(2+) did not alter the Ca(2+) signal, suggesting that the Ca(2+) signal was due to store Ca(2+) release. In Ca(2+)-free medium, the 2,2'-DTDP-induced [Ca(2+)](i) increase was not changed by depleting store Ca(2+) with 50 microM bredfeldin A (a Golgi apparatus permeabilizer), 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler), 1 microM thapsigargin (an endoplasmic reticulum Ca(2+)pump inhibitor) or 5 microM ryanodine. Conversely, 2,2'-DTDP pretreatment abolished CCCP and thapsigargin-induced [Ca(2+)](i) increases. 2,2'-DTDP-induced Ca(2+) signals in Ca(2+)-containing medium were not affected by modulation of protein kinase C activity or suppression of phospholipase C activity. However, 2,2'-DTDP-induced Ca(2+) release was inhibited by a thiol-selective reducing reagent, dithiothreitol (5-25 microM) in a concentration-dependent manner. Collectively, this study shows that 2,2'-DTDP induced [Ca(2+)](i) increases in human osteosarcoma cells via releasing store Ca(2+)from multiple stores in a manner independent of protein kinase C or phospholipase C activity. The 2,2'-DTDP-induced store Ca(2+) release appeared to be dependent on oxidation of membranes.  相似文献   

16.
Shin Y  Daly JW  Choi OH 《Cell calcium》2000,27(5):269-280
Sphingosine induces a biphasic increase in cytosolic-free Ca(2+)([Ca(2+)](i)) with an initial peak followed by a sustained increase in HL-60 cells differentiated into neutrophil-like cells. The initial peak is not affected by the presence of ethylene glycol bis (beta-aminoethyl ether) N, N, N', N-tetraacetic acid (EGTA) in the buffer and appears to be dependent on conversion of sphingosine to sphingosine -1-phosphate (S1P) by sphingosine kinase, since it is blocked by the presence of N, N-dimethylsphingosine (DMS), which, like sphingosine, causes a sustained increase itself. The sustained increase that is elicited by sphingosine or DMS is abolished by the presence of EGTA in the buffer. The sustained sphingosine-induced Ca(2+)influx does not appear due to Ca(2+)influx through store-operated Ca(2+)(SOC) channels, since the influx is not inhibited by SKF 96365, nor is it augmented by loperamide. In addition, sphingosine and DMS attenuate the Ca(2+)influx through SOC channels that occurs after depletion of intracellular stores by ATP or thapsigargin. Both the initial peak and the sustained increase in [Ca(2+)](i)elicited by sphingosine can be blocked by phorbol 12-myristate 13-acetate (PMA)-elicited activation of protein kinase C. Thus, in HL-60 cells sphingosine causes a mobilization of Ca(2+)from intracellular Ca(2+)stores, which requires conversion to S1P, while both sphingosine and DMS elicit a Ca(2+)influx through an undefined Ca(2+)channel and cause a blockade of SOC channels.  相似文献   

17.
Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.  相似文献   

18.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

19.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

20.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号