首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NUCLEIC acid hybridization suggests that the Epstein-Barr virus (EBV) genome may be present in human lymphoblastoid cell lines that are free of detectable EBV1,2. We describe here a plentiful appearance of EBV-associated early antigens (EA) and the viral capsid antigen (VCA) in non-producing Raji and NC-37 cell lines when exposed to 5-bromodeoxyuridine (BUdR) or 5-iododeoxyuridine (IUdR). These antigens were synthesized in all the Raji and NC-37 clones exposed to BUdR or IUdR, strongly suggesting that a complete, but unexpressed, EBV genome exists in the cells of these non-producing lines.  相似文献   

2.
THE availability of homogeneous populations of human and murine myeloma cells has provided a unique opportunity for investigating the mechanism of immunoglobulin formation1. Continuous lines of cultured lymphoid cells producing specific antibody or manifesting delayed hypersensitivity would be even more useful in studying the molecular events of the immune response. Human lymphoid cell lines have been established in long term culture using Epstein–Barr virus (EBV)2, 3 or phyto-haemagglutinin4 but antigen alone has not been effective5. The purpose of the work reported here was selectively to establish antigen-sensitive cells in culture by stimulating peripheral white cells from delayed hypersensitive donors with antigen in vitro and then exposing the cells to EBV. This combination of antigen and virus was chosen because of the following considerations: (1) some RNA and DNA viruses do not replicate in resting lymphocytes but can infect antigen-sensitive lymphocytes which have been stimulated in vitro with mitogens or specific antigen6, 7; (2) polyoma virus transforms cells in the G2 phase of the cell cycle more effectively than in G1 (ref. 8). These observations suggested that combined exposure to antigen and EBV might result in the establishment of cell lines enriched for antigen-sensitive or antibody-forming cells.  相似文献   

3.
4.
5.
We attempted to infect primary gastric epithelia (PGE) with recombinant Epstein-Barr virus (EBV) carrying a selectable marker that made it possible to select EBV-infected cells. Cells dually positive for EBV-determined nuclear antigen (EBNA) and cytokeratin were detected in 3 of 21 primary cultures after 3 days of EBV inoculation. From one culture, EBV-infected cell clones were repeatedly obtained at a frequency of 3 to 5 cell clones per 106 cells. EBV-infected clones had enhanced population doubling and grew to attain a highly increased saturation density, together with acquisition of marked anchorage independence. The infected clones retained the ultrastructural morphology characteristic of gastric mucosal epithelium and have been growing stably for more than 18 months (corresponding to at least 300 generations) so far, in clear contrast to the parental PGE cells, which ceased growth after 60 generations. The p53 gene of the parental PGE cells was found to be overexpressed, perhaps thereby conferring the basal potential for long-term survival in vitro. Moreover, EBV infection accelerated, to a significant extent, the growth rate and agar clonability of NU-GC-3 cells, an established EBV-negative but EBV-susceptible human gastric carcinoma cell line. Both EBV-converted PGE and NU-GC-3 clones, like EBV-positive gastric carcinoma biopsy specimens, expressed a restricted set of EBV latent infection genes characterized by the absence of EBNA2 and latent membrane protein 1 (LMP1) expression. These results indicate that EBV infection causes a transformed phenotype on PGE in the setting of possible unregulated cell cycling and renders even established gastric carcinoma cells more malignant via a limited spectrum of viral latent-gene expression. This study may reflect an in vivo scenario illustrating multiphasic involvement of EBV in carcinogenesis of gastric or other epithelial cancers.  相似文献   

6.
While the bulk of a virus-induced cytotoxic T-lymphocyte (CTL) response may focus on a few immunodominant viral antigens, in certain tumor virus systems the detectability of clones recognizing other, subdominant antigens can assume particular importance. By using the human CTL response to Epstein-Barr virus (EBV) as a model system, here we show that even rare components of virus-specific memory can be selectively reactivated in vitro when the relevant target antigen is expressed in autologous stimulator cells from a recombinant adenovirus (RAd) vector. We generated a replication-deficient adenovirus, RAd-E3C, which in skin fibroblast cultures expressed the EBV nuclear antigen EBNA3C at a 10- to 100-fold-higher level than that naturally present in EBV-transformed lymphoblastoid cell lines (LCLs). Initial experiments with a donor whose polyclonal CTL response to LCL stimulation contained a strong EBNA3C-specific component showed that these CTLs could be efficiently reactivated by in vitro stimulation either with RAd-E3C-infected fibroblasts or with RAd-E3C-infected peripheral blood mononuclear cells. Then we studied donors whose responses to LCL stimulation contained little if any detectable EBNA3C reactivity but were dominated by clones recognizing other EBV target antigens; in vitro stimulation with RAd-E3C-infected peripheral blood mononuclear cells selectively reactivated EBNA3C-specific CTL clones from these individuals, with the epitope specificities of responses subsequently identified at the peptide level. This RAd-based approach could be applied more generally to screen for human CTL responses against any candidate target antigen expressed by tumor cells.  相似文献   

7.
Three continuous lymphoblastoid cell lines, 2 productive of nucleocapsids and 1 nonproductive line, were studied for their content of Epstein-Barr viral (EBV) antigens during transition from stationary to logarithmic phase growth. As a preliminary step, viable cells were separated from degenerating ones in discontinuous gradients of serum albumin. Viral capsid antigens were found in both living and dead cells of the 2 producer lines; however, complement fixing (CF) antigens and nuclear antigen were detected only in viable cell subpopulations. The content of antigen detectable in extracts of viable cells by complement fixation remained constant in replicating and resting cultures; further, all viable cells of the 3 lines demonstrated intranuclear antigen by anticomplement immunofluorescence in all stages of growth. In contrast, the proportion of cells with viral capsid antigen in the producer lines increased 7- to 24-fold following entry of resting populations into the phase of exponential growth.The results suggest that expression of viral capsid antigens is discontinuous and is initiated in response to events in log phase, possibly DNA synthesis or mitosis. Expression of the complement fixing and nuclear antigens in continuous in viable cells. These findings emphasize the intimate relationship of the CF and nuclear antigen to the transformed state and suggest that study of this antigen complex will shed light on the mechanisms of lymphocyte transformation by EBV.  相似文献   

8.
Host cell lines developed by genetic engineering sometimes show instabilities in maintaining their genetically acquired phenotypes. Previously, a hybrid host cell line, designated as hybrid of kidney and B cells (HKB), capable of retaining selected phenotypes originally existing in the parental cells was developed via fusion of 293 cells and HH514‐16 cells. Although HKB did indeed successfully preserve several favorable phenotypes, the expression of Epstein‐Barr virus (EBV) specific nuclear antigen 1 (EBNA1), which should be constitutively expressed for host cells to utilize oriP expression vector in transient production of therapeutic proteins, was observed to be unstable. Here, in an attempt to obtain stable expression of EBNA1, a cell type that contains an integrated EBV genome, rather than HH514‐16 cells, which harbor an episomal EBV genome, was applied for fusion with 293 cells. Fusion of 293 cells with Namalwa cells led to the creation of a new type of hybrid, F2N, which was able to stably express EBNA1 while not producing EBV particles. One of the F2N clones, F2N78, was observed to maintain EBNA1 expression for more than 1 year under serum‐free suspension culture conditions along with human specific glycosyl phenotypes observed previously in HKB. In addition, F2N78 was demonstrated to be an appropriate host cell line for both the transient and stable production of recombinant therapeutics with the features of safety expected of production cell lines for human use. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 432–440, 2013  相似文献   

9.
10.
Analysis of cellular immune response to EBV by using cloned T cell lines   总被引:9,自引:0,他引:9  
Eight cloned T cell lines specific for Epstein Barr virus-transformed B lymphocytes were derived. In the presence of the autologous virus-infected B cells, the T cell lines show HLA-restricted cytotoxic activity and also secrete alpha-interferon in sufficient amounts to inhibit infection and transformation. Four of these clones showed restriction to a single HLA locus (two for A3, and two for B7) and three showed exquisite self-restriction lysing only autologous targets. These seven clones expressed the classical cell surface phenotype of cytotoxic T cells being T3, 8, 11, and la-positive and T4-negative. An eighth clone that lacked the T8 surface marker appeared to recognize both B7 and BW51. HLA restriction was confirmed: 1) by the ability of a monoclonal antibody against an HLA-A,B,C framework antigen (W6-32) to block the cytotoxicity; 2) the failure of the clones to lyse Daudi, an EBV-positive, HLA-A,B, C-negative cell line; and 3) successful competition of the cytotoxicity by autologous but not allogeneic cold targets. The cloned T cells do not kill EBV-negative targets such as autologous pokeweed mitogen blasts and cell lines including CEM and the natural killer cell target K562. The results suggest T cell clones may be generated against an EBV-associated membrane antigen on transformed B cells, perhaps equivalent to the lymphocyte-determined membrane antigen, and that the recognition is restricted by a single HLA determinant. We propose that single T cells can play multiple roles in controlling EBV infection in vitro and in vivo including the elimination of transformed cells by cytotoxicity and the prevention by secreted interferon of further re-infection and transformation.  相似文献   

11.
The localization of Epstein-Barr virus (EBV) genomes in nuclei of the human lymphoblastoïd cell lines Raji, Jijoye, P3HR-1, Daudi and Ramos was investigated by in situ hybridization with biotinylated EBV DNA probes. We found that all sites of hybridization were associated with the chromosomes. Only some of these sites were present on both chromatids and these had a non-random distribution; these sites could represent EBV sequences integrated at specific points on the chromosomes. The total mean site number corresponded with the number of viral DNA copies estimated in the different cell lines by other techniques, but the copy number was highly variable from cell to cell in a given line.  相似文献   

12.
Recombinant Epstein-Barr virus (EBV) with a selectable marker successfully infected the human gastric carcinoma cell lines AGS, MKN28, and MKN74. Following incubation in selective media, drug-resistant cell clones were isolated and proved to be infected with EBV. All gastric carcinoma cell clones were positive for EBNA 1 but negative for EBNA 2. LMP 1 expression was negative in most clones, but there were a few exceptions. Gastric carcinoma cells were negative for the EBV receptor CD21, and infection was not inhibited by pretreatment of cells with the anti-CD21 monoclonal antibody OKB7. The results indicate that gastric carcinoma cells are susceptible to EBV infection and that infection is mediated via a new receptor different from CD21.  相似文献   

13.
We prepared single cell clones from two ovarian carcinoma cell lines, CA-OV3 and SK-OV3, and analyzed the effect of all-trans-RA treatment on cell division, DNA synthesis, and cell cycle stage distribution of these single cell clones. Our results show that despite the well-known heterogeneous nature of these cell lines, all single cell clones of SK-OV3 cells are resistant to the growth inhibitory effects of all-trans-RA. In contrast, all single cell clones of CA-OV3 cells were growth inhibited by all-trans-RA. However, the extent of growth inhibition did vary somewhat from clone to clone. Additional studies employing flow cytometry showed that all-trans-RA blocked CA-OV3 cell cycle progression in the G1stage. Finally, all-trans-RA was able to inhibit G1progression in growth-arrested CA-OV3 cells following stimulation with fetal bovine serum, insulin, IGF-1, or estrogen. Since each of these growth factors is known to act via distinct signal transduction pathways, our results suggest that all-trans-RA blocks G1progression by targeting a downstream process or event which occurs at a point after the insulin/IGF-1, estrogen, and serum signal transduction pathways converge.  相似文献   

14.
Cloned T cells have been useful for assessing the lytic potential of distinct T cell subsets and for determining the relative contribution of different effector mechanism involved in the lytic process. Alloreactive CD8+ murine T cell clones and cloned murine CD4+ TH1 and TH2 T cells reactive with nominal antigen (ovalbumin) lysed nucleated target cells bearing antigen or coated with anti-CD3 monoclonal antibody in a short term51Cr-release assay. These clones were also evaluated for their ability to lyse efficiently sheep erythrocyte (SRBC) target cells coated with anti-CD3 mAb by a mechanism (presumably involving membrane damage) that does not involve nuclear degradation. Three patterns of lysis were observed: CD8+ and some CD4+ TH2 effector cells lysed efficiently nucleated target cells and anucleated SRBC coated with anti-CD3 mAb. However, CD4+ TH1 (and a few TH2) T cells which lysed nucleated target cells bearing antigen or coated with anti-CD3 mAb didnotlyse efficiently the SRBC coated with anti-CD3 mAb. One CD4 bearing TH2 cell failed to lyse efficiently either nucleated target cells or anucleated SRBC coated with anti-CD3 mAb. These results indicate that both TH1 and TH2 clones have lytic capabilities. Furthermore, they suggest that some but not all TH2 murine T cell clones have lytic characteristics similar to those of conventional CD8+ CTL. However, it is not certain how these patterns of lysis of target cellsin vitro relates to the capacity of CTL to lyse such target cellsin vivo.  相似文献   

15.
Radiobiological Inactivation of Epstein-Barr Virus   总被引:4,自引:4,他引:0       下载免费PDF全文
Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either UV or X irradiation. No dose of irradiation increases the transforming capacity of EBV. The X-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to UV irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of UV damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of UV and X irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P(3)HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction. Inactivation of early antigen induction is influenced by the cells in which the assay is performed. Inactivation proceeds more rapidly in EBV genome-free cells than in genome carrier Raji or in P(3)HR-1 converted EBV genome-free cells clone B(1). These results indicate that the resident EBV genome participates in the early antigen induction process. Variation in radio-biological killing of B95-8 and P(3)HR-1 EBV is not attributable to variations in the repair capacities of the cells in which the viruses were assayed, since inactivation of HSV was the same in primary lymphocytes and in all lymphoid cell lines tested.  相似文献   

16.
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.  相似文献   

17.
 The hepatitis B virus surface antigen (HBsAg) gene, under control of the inducible mouse metallothionein I gene promoter, was inserted in an expression vector based on the Epstein-Barr virus (EBV). This vector was introduced into human cells by DNA transfection and clones were selected for their resistance to hygromycin B. The recombinant EBV vector replicates efficiently as an episome in human cells and approximately six copies per cell were found in one clone of hygromycin-B-resistant cells. These cells produce high levels of HBsAg in the presence of metals. The protein is mainly found in the cell medium, suggesting that the HBsAg is secreted from the cells. Received: 25 February 1996 / Received revision: 21 June 1996 / Accepted: 15 July 1996  相似文献   

18.
Based on our recent observation that Epstein-Barr virus (EBV) is detected in 37% of the tissues of hepatocellular carcinoma, and especially frequently in cases with hepatitis C virus (HCV), the effect of EBV infection on the replication of HCV was investigated. EBV-infected cell clones and their EBV-uninfected counterparts in cell lines MT-2 (a human T-lymphotropic virus type I-infected T-cell line), HepG2 (a hepatoblastoma cell line) and Akata (a Burkitt's lymphoma cell line) were compared in terms of their permissiveness for HCV replication following inoculation of HCV derived from patients who were HCV carriers. The results indicated that EBV-infected cell clones, but not their EBV-uninfected counterparts, promoted HCV replication. EBV-encoded nuclear antigen 1 (EBNA1), which is invariably expressed in EBV-infected cells, supported HCV replication. Deletion analysis of the EBNA1 gene showed good correlation between transactivation activity and the activity supporting HCV replication. The present findings suggest that EBV acts as a helper virus for HCV replication.  相似文献   

19.
In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4(+) T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4(+)-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4(+) T cells from nearly all EBV-seropositive individuals and evades detection by CD8(+) T cells, EBNA1-reactive CD4(+) T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4(+)-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.  相似文献   

20.

Introduction

Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors.

Methods

Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ).

Results

The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections.

Conclusion

We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号