首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interferon induced enzyme 2'5' oligoadenylate synthetase produces 2'5' pppA(pA)n the first discovered natural nucleotide with a 2'5' linkage. We describe a direct assay of this enzyme based on separation by thin layer chromatography (TLC) of the substrate ATP and the products 2'5' pppA(pA)n (n larger than or equal to 1). This technique presents obvious advantages compared to the currently used methods. Moreover the enzyme uses other nucleotides as substrates forming co-oligonucleotides 2'5 pppA(pA)n pN (N = U,G,C,dA,dG,dT and dC). Additional procedures are described using different developing solvent systems for the separation of the core-2'5' oligonucleotides (2'5' A(pA)npN) containing AMP-residues entirely and those with another nucleotide at the 2' end.  相似文献   

2.
3.
4.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

5.
The 5'' end group of tobacco mosaic virus RNA is m7G5'' ppp5'' Gp.   总被引:16,自引:9,他引:16       下载免费PDF全文
RNA extracted from CsC1-purified virions of tobacco mosaic virus is shown to give rise to an unusual nucleotide on digestion which RNAase T2, in addition to the four major nucleotides. This minor component has the electrophoretic characteristics of a phosphorylated end group, but is partially resistant to bacterial alkaline phosphatase. It is, however, a substrate for venom phosphodiesterase or nucleotide pyrophosphatase, yielding products which imply the structure m7G5'ppp5'Gp. TMV RNA, like many animal cellular and viral mRNAs recently examined, therefore has a 5' terminus blocked by a methylated nucleotide inverted with respect to the rest of the chain.  相似文献   

6.
Heterogeneous nuclear RNA contains double-stranded regions that are not found in mRNA and that may serve as recognition elements for processing enzymes. The double-stranded regions of heterogeneous nuclear RNA prepared from HeLa cells promoted the synthesis of (2',5')oligoadenylate [(2',5')oligo(A) or (2'5')An] when incubated with (2',5')An polymerase. This enzyme is present in elevated levels in interferon-treated cells, and labeled heterogeneous nuclear RNA incubated with extracts of these cells is preferentially cleaved, since mRNA included in the same incubations is not appreciably degraded. The cleavage of heterogenous nuclear RNA is caused by the synthesis of (2'5')An and by a "localized" activation of the (2',5')An-dependent endonuclease, since it was enhanced by ATP, the substrate of the (2',5')An polymerase, and inhibited by 2'-dATP and ethidium bromide. Both of these compounds suppress the synthesis of (2',5')An, the first by competitive inhibition and the latter by intercalating into double-stranded RNA. The possible role of double-stranded regions and of the (2',5')An polymerase-endonuclease system in the processing of heterogeneous nuclear RNA is discussed.  相似文献   

7.
Detritylation of 2',3'-O-carbonyl-5'-O-trityluridine (Ia) with ethereal hydrogen chloride affords 2',3'-O-carbonyluridine (Ib; 83%) which is converted by mesylation to the 5'-mesylcarbonate Ic (75%). Reaction of compound, Ic with tetrabutylammonium bromide in DMF affords the 5'-bromo carbonate Id (77%) which is reduced with tributyltin hydride to the 5'-deoxyuridine 2',3'-cyclic carbonate Ie (70%). When heated with imidazole, compound Ie affords the 2,2'-anhydro derivative IIa (76%) which is converted to the 2'-chloro derivative IIIa (88%) on heating with HC1/DMF. The tributyltin hydride reduction of compound IIIa gives 2',5'-dideoxyuridine (IIIb; 68%). When heated with NaHCO3 in DMF, the 5'-bromo carbonate Id affords the anhydro bromo derivative IIb (50%) which is converted to the 2',5'-dichloro derivative IIIc (86%) on heating with HC1/DMF. The tributyltin hydride reduction of compound IIIc affords the 2',5'-dideoxy derivative IIIb (59%). Alkaline hydrolysis of the 2,2'-anhydro derivative IIa affords the arabinosyl derivative IVa which is converted to the diacetyl derivative IVb (34%) by acetylation. When refluxed in water, the 2',3'-cyclic carbonates Ib, Id, and Ie are hydrolysed to the parent nucleosides, namely, uridine (Va; 81%), 5'-bromo-5'-deoxyuridine (Vb; 78%), and 5'-deoxyuridine (Vc; 83%). Hydrolysis of carbonates Ib and Ie is accompanied by the formation of the 2,2'-anhydro derivatives IIc (10%) and IIa (5%) as by-products.  相似文献   

8.
Addition of 3' and 5' terminal phosphates to dApdA causes a decrease in conformational flexibility. pdApdAp has much fewer conformers with energies below 2.5 kcal./mole than dApdA. THE A, B and Watson-Crick (34) helices are the most preferred forms. Other important conformations are in the trans domain of psi. Thus, flexibility in psi as well as in omega and omega, and in the sugar pucker is indicated. The transformation from the B helix to the Watson-Crick helix follows a low energy path. This is significant since Watson-Crick conformations may be important for intercalation into nucleic acid polymers (40-42) above the dimer level. The B helix is preferred over the A form in these large DNA subunits.  相似文献   

9.
2'(3')-O-L-Phenylalanylderivatives of fluorescent 1,N6-ethenoadenosine and 3,N4-ethenocytidine were prepared by chemical synthesis. Both compounds are good acceptor substrates in ribosomal peptidyltransferase reactions. Since these compounds cannot form Watson-Crick base pairs, the results indicate that the terminal aminoacyladenosine unit of AA-tRNA is bound to ribosomal protein on the acceptor site of peptidyltransferase and not to rRNA.  相似文献   

10.
The solution conformation of adenylyl-(3',5')-adenosine and adenylyl-(2',5')-adenosine in both the stacked and unstacked states was studied by carbon-13 magnetic resonance spectroscopy. Large chemical shift differences between the base carbons in the dimers and those in the corresponding monomers are attributed in part to the influence of base-base interaction. Carbon-phosphorus couplings across three bonds revealed the preferred populations for certain backbone rotamers, demonstrating that significant changes in conformation about the "c(3')-O and C(5')-O bonds do not occur in the temperature or salt-induced unstacking of adenylyl-(3',5')-adenosine. However, rotations about the C(2')-O and C(5')-O bonds occur in the temperature-mediated unstacking of adenylyl-(2',5')-adenosine.  相似文献   

11.
In an effort to identify genes involved in the excision of tRNA introns in Saccharomyces cerevisiae, temperature-sensitive mutants were screened for intracellular accumulation of intron-containing tRNA precursors by RNA hybridization analysis. In one mutant, tRNA splicing intermediates consisting of the 5' exon covalently joined to the intron ('2/3' pre-tRNA molecules) were detected in addition to unspliced precursors. The mutant cleaves pre-tRNA(Phe) in vitro at the 3' exon/intron splice site, generating the 3' half molecule and 2/3 intermediate. The 5' half molecule and intron are not produced, indicating that cleavage at the 5' splice site is suppressed. This partial splicing activity co-purifies with tRNA endonuclease throughout several chromatographic steps. Surprisingly, the splicing defect does not appreciably affect cell growth at normal or elevated temperatures, but does confer a pseudo cold-sensitive phenotype of retarded growth at 15 degrees C. The mutant falls into the complementation group SEN2 previously defined by the isolation of mutants defective for tRNA splicing in vitro [Winey, M. and Culbertson, M.R. (1988) Genetics, 118, 609-617], although its phenotypes are distinct from those of the previous sen2 isolates. The distinguishing genetic and biochemical properties of this new allele, designated sen2-3, suggests the direct participation of the SEN2 gene product in tRNA endonuclease function.  相似文献   

12.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

13.
14.
15.
Forty different oligonucleotides were investigated as possible inhibitors of the depolymerizing activity of RNase A. The strongest inhibitors among the diribonucleoside 2'-5' mono- phosphates were: G2'-5'G, C2'-5'G and U2'-5'G, and among the diribonucleoside 3'-5' monophosphates: ApU, ApC and GpU. Of the eight trinucleotides investigated, ApApUp, ApApCp and ApGpUp were the strongest inhibitors. All four dinucleotides studied (ApUp, ApCp, GpUp and GpCp) were very strong inhibitors, ApUp being the strongest one. The results show that the nature of the various bases in the oligonucleotide has an effect on the degree of inhibition, and that the 3' phosphomonoester group increases the binding of the oligonucleotide to RNase A. These inhibitors can be used in physicochemical and biochemical studies of ribonuclease.  相似文献   

16.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

17.
The synthesis of 3'(2')-O-thiobenzoyl nucleoside 5'-phosphates based on the condensation of N-(thiobenzoyl)-imidazole with nucleside 5'-phosphates was carried out. The UV absorption spectra, CD spectra, PMR spectra and chromatographic and electrophoretic characteristics of synthesized compounds were obtained. By means of PMR it was shown that the 2':3' isomer ratio in water at ambient temperature is about 2:3.  相似文献   

18.
N6-Methoxy-2',3',5'-tri-O-methyladenosine crystallizes in space group P2(1)2(1)2(1) with cell dimensions a = 4.693, b = 11.412, c = 31.741 A. Least-squares refinement of diffractometer data converged at R = 0.038. The location of a hydrogen atom at N1 and the observed bond lengths and bond angles indicate unequivocally the imino tautomer of the adenine moiety. The N6-methoxy group is oriented syn to N1 and the glycosidic torsion angle XCN is -3.6 degrees, i.e. in the anti range. The furanose ring has a C2'-exo/C3'- endo pucker (P = 0.9 degrees) and is unusually flattened (tau m = 30.0 degrees). The conformations of the O-methyl groups of the ribose ring are compared with those of monomethylated nucleosides, including the biologically important 2'-O-methyl nucleosides. Evidence is presented for the existence of C-H ... N intermolecular hydrogen bonds between adenine moieties. Bearing in mind that N6-methoxyadenosine is a promutagenic analogue, the results are compared with those for the corresponding promutagenic N4-methoxycytidine. They are also discussed in relation to the tautomerism, the conformation of the N6-methoxy group, and the associated base-pairing abilities in the absence and presence of polymerases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号