首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.  相似文献   

2.
In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, “classical” multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex phenotypic outcomes in multicellular organisms.  相似文献   

3.
Green fluorescent protein (GFP) and its derivatives are the most widely used molecular reporters for live cell imagining. The development of organelle-specific fusion fluorescent proteins improves the labeling resolution to a higher level. Here we generate a R26 dual fluorescent protein reporter mouse, activated by Cre-mediated DNA recombination, labeling target cells with a chromatin-specific enhanced green fluorescence protein (EGFP) and a plasma membrane-anchored monomeric cherry fluorescent protein (mCherry). This dual labeling allows the visualization of mitotic events, cell shapes and intracellular vesicle behaviors. We expect this reporter mouse to have a wide application in developmental biology studies, transplantation experiments as well as cancer/stem cell lineage tracing.  相似文献   

4.
A novel triple fusion reporter system for use in gene trap mutagenesis   总被引:1,自引:0,他引:1  
Gene trapping is an insertional mutagenesis strategy that allows for simultaneous gene identification and mutation in embryonic stem (ES) cells. Gene trap vectors both disrupt coding sequence and report on the genes' endogenous expression. The most popular gene trap reporter to date combines beta-galactosidase expression with neomycin resistance in a fusion protein known as beta-geo. Here we describe a refinement to this reporter that also incorporates real time fluorescent readouts. We have constructed a series of gene trap vectors incorporating a novel tripartite fusion protein consisting of EGFP, beta-galactosidase, and the neomycin or hygromycin resistance activities. Our results indicate that these triple fusions can function efficiently as reporters of endogenous trapped gene expression and subcellular localization. We show that these fusion proteins constitute versatile gene trap reporters whose activity can be detected in real time by fluorescence and in fixed tissue with a sensitive enzymatic activity.  相似文献   

5.
6.
 A transgene reporter consisting of the bombyxin gene promoter and the green fluorescent protein coding region was introduced into intact brains of the silkworm Bombyx mori by in vitro electroporation. After in vitro culture of the brains, the fluorescence derived from the introduced reporter gene was observed in all cases in eight neurosecretory cells that had previously been identified as bombyxin-producing cells (BPCs). Although the fluorescence was not always observed in all cells, it was specific to BPCs, indicating that the reporter was under the control of the bombyxin gene promoter in a BPC-specific manner. Electroporatical introduction of a reporter gene was therefore found to be a suitable method for analyzing cell-specific expression in intact tissues and to be substitute for germ-line transmission of reporters in the transgenic system. Application of this technique enables us to analyze the cell-specific expression of transgene reporters within a few days and treat more than several dozens of the reporters within 1 month, which is difficult to do with the transgenic system. Received: 8 December 1998 / Accepted: 8 March 1999  相似文献   

7.
AIMS: To examine the value of the fis promoter in monitoring regrowth of a surface-attached bacterial population following exposure to chemical stress using several candidate reporters, beta-galactosidase (lacZYA), bacterial luciferase (luxAB) and enhanced green fluorescent protein (EGFP). METHODS AND RESULTS: The pattern of expression for the reporters within Escherichia coli cells attached to surfaces was determined. Both the bacterial luciferase reporter and EGFP were readily detected, but EGFP was found to overcome problems associated with luciferase and beta-galactosidase. The effect of surface pretreatment, using polymer systems, on bacterial attachment and growth confirmed the usefulness of this approach. CONCLUSION: The fis promoter, combined with EGFP, can be used successfully to study adhesion, biocidal damage and recovery. The stability of the EGFP enabled the magnitude of the total recovery response to be monitored as cells remained fluorescent after the decline in fis expression. SIGNIFICANCE AND IMPACT OF THE STUDY: The E. coli Pfis-egfp reporter system provides a new, versatile and sensitive tool to investigate bacterial adhesion both quantitatively and qualitatively.  相似文献   

8.
Various forms of green fluorescent protein (GFP) have become important reporters of gene transfer and expression after transfection or infection of cells in cell culture. Frequently, molecular biological assays (Northern blots, PCR) are applied to detect reporter gene expression in target organs. However, these methods are not suitable for evaluation of tissue- or cell-specific expression which would be of great interest especially in case of using tissue-specific promoters. Therefore, organs of transgenic mice with the enhanced green fluorescent protein (EGFP) gene under control of the cytomegalovirus (CMV) promoter were processed for histology by formaldehyde fixation and embedding in paraffin. Sections were deparaffinized, mounted and evaluated for fluorescence in a confocal laser scanning microscope. This method combines the advantages of direct exploitation of tissue sections without further staining procedures with evaluable tissue-, cell-, and even subcellular-specific distribution patterns of EGFP expression in tissues. Results obtained by direct evaluation of EGFP fluorescence in paraffin sections were confirmed by immunohistochemical staining with anti-EGFP. In the present report, we demonstrate that application of confocal microscopy on routinely processed histological preparations is very suitable for determining gene transfer efficiency and promotor activities.  相似文献   

9.
10.
In the present study, we have established a novel transgenic mouse and transgenic rats with dual reporters of EGFP and ELuc. In these transgenic (Tg) rodents, both GFP fluorescent and luciferase luminescent signals were ubiquitously detected in the heart, liver, kidney and testis, while only the GFP signal was detected in the brain. This expression system is based on a P2A linked EGFP/ELuc protein allowing both signals to be generated simultaneously. Microscopy experiments, FCM, and luciferase assays showed strong expression in freshly isolated ADSCs from Tg rodents upon transplantation of Tg rat-derived ADSCs into wild-type-mice. The ELuc transgene signal was observed and traced in vivo, and EGFP positive cells could be recovered from ELuc positive tissues in engraftment sites of wild-type mice for multiple analysis. These dual reporter Tg rodents are a useful reconstituted model system of regenerative medicine and are a valuable tool to study stem cells.  相似文献   

11.
The Cre-loxP system is widely used for making conditional alterations to the mouse genome. Cre-mediated recombination is frequently monitored using reporter lines in which Cre expression activates a reporter gene driven by a ubiquitous promoter. Given the distinct advantages of fluorescent reporters, we developed a transgenic reporter line, termed IRG, in which DsRed-Express, a red fluorescent protein (RFP) is expressed ubiquitously prior to Cre-mediated recombination and an enhanced green fluorescent protein (EGFP) following recombination. Besides their utility for monitoring Cre-mediated recombination, we show that in IRG mice red and green native fluorescence can be imaged simultaneously in thick tissue sections by confocal microscopy allowing for complex reconstructions to be created that are suitable for analysis of neuronal morphologies as well as neurovascular interactions in brain. IRG mice should provide a versatile tool for analyzing complex cellular relationships in both neural and nonneural tissues.  相似文献   

12.
mRNA from single cells was quantified using real-time RT-PCR after recording the address and reporter protein activity with chemiluminescence, fluorescence, and electrochemical techniques, using luciferase, green fluorescent protein, and secreted alkaline phosphatase. mRNA copy number ranging from below 103 to 107 in single cells showed a lognormal distribution for both externally introduced reporter genes and internally expressed genes. The fluctuation in the gene expression decreased with the increase of the number of cells picked but did not decrease with the increase of mRNA copy number per cell. We found that the correlation coefficients for mRNA and protein expression in logarithmic plot at single-cell level were much lower than 1.00.  相似文献   

13.
Flow cytometry is extensively used for the isolation of discreet populations of cells from complex pools. The advent of autofluorescent (AFP) reporters such as wild type Green Fluorescent Protein (wtGFP) (Chalfie et al., 1994) and its variants, including enhanced green fluorescent protein (EGFP) and enhanced yellow fluorescent protein (EYFP) (Cormack et al., 1996), as vital reporters opens up the possibility of sorting live reporter-expressing cells. Moreover the use of these reporters in transgenics (Okabe et al., 1997) or mice carrying homologously targeted loci (Godwin et al., 1998) should enable the direct isolation of reporter-expressing cells from any desired lineage. Here we have assessed this approach in transgenic mice. ES cell-mediated transgenesis was used for generating a line of mice that express an autofluorescent EYFP reporter in the heart and part of the neural tube at midgestation. Pools of fluorescent cells harboring and expressing the EYFP reporter were isolated from defined regions of embryos and their origin confirmed by assaying the expression of domain-defined marker genes. Such a tool should prove useful for gaining access to any given lineage that can be fluorescent protein reporter tagged.  相似文献   

14.
15.
To test modifications in sensitization to radiation or drugs in preclinical studies of cancer therapy, the colony-forming assay is regarded as the gold standard. Because this assay is time consuming, somewhat laborious, and unsuitable for rapid screening, development of other assays is desirable. We describe here an assay based on the detection of enhanced green fluorescence protein (EGFP) with flow cytometry that is particularly suitable for genetic manipulation studies in which the gene of interest is introduced together with EGFP as reporter. It is easily adaptable to other reporters, however, whether naturally fluorescent or requiring immunochemical staining. Cells are irradiated as mixed populations of a known standard cell line (nonfluorescent) together with the genetically manipulated cell line expressing EGFP. Ratios of fluorescent and nonfluorescent cells are measured before treatment and several days after treatment. If the cell populations have equal radiosensitivities, the ratio remains unchanged. Changes in the ratio indicate changes in radiosensitivity. The assay was validated for two situations in which dominant negative peptides inhibiting DNA repair were expressed in A549 human lung cells and affected radiosensitivity.  相似文献   

16.
An accurate visual reporter system to assess homology-directed repair (HDR) is a key prerequisite for evaluating the efficiency of Cas9-mediated precise gene editing. Herein, we tested the utility of the widespread promoterless EGFP reporter to assess the efficiency of CRISPR/Cas9-mediated homologous recombination by fluorescence expression. We firstly established a promoterless EGFP reporter donor targeting the porcine GAPDH locus to study CRISPR/Cas9-mediated homologous recombination in porcine cells. Curiously, EGFP was expressed at unexpectedly high levels from the promoterless donor in porcine cells, with or without Cas9/sgRNA. Even higher EGFP expression was detected in human cells and those of other species when the porcine donor was transfected alone. Therefore, EGFP could be expressed at certain level in various cells transfected with the promoterless EGFP reporter alone, making it a low-resolution reporter for measuring Cas9-mediated HDR events. In summary, the widespread promoterless EGFP reporter could not be an ideal measurement for HDR screening and there is an urgent need to develop a more reliable, high-resolution HDR screening system to better explore strategies of increasing the efficiency of Cas9-mediated HDR in mammalian cells.  相似文献   

17.
18.
Fluorescent reporter proteins have proven useful for imaging techniques in many organisms. We constructed optimized expression systems for several fluorescent proteins from the far-red region of the spectrum and analyzed their utility in several mycobacterial species. Plasmids expressing variants of the Discosoma Red fluorescent protein (DsRed) from the Mycobacterium bovis hsp60 promoter were unstable; in contrast expression from the Mycobacterium smegmatis rpsA promoter was stable. In Mycobacterium tuberculosis expression of several of the far-red reporters was readily visualised by eye and three reporters (mCherry, tdTomato, and Turbo-635) fluoresced at a high intensity. Strains expressing mCherry showed no fitness defects in vitro or in macrophages. Treatment of cells with antibiotics demonstrated that mCherry could also be used as a reporter for cell death, since fluorescence decreased in the presence of a bactericidal compound, but remained stable in the presence of a bacteriostatic compound. mCherry was functional under hypoxic conditions; using mCherry we demonstrated that the PmtbB is expressed early in hypoxia and progressively down-regulated. mCherry and other far-red fluorescent proteins will have multiple uses in investigating the biology of mycobacteria, particularly under non-replicating, or low cell density conditions, as well as providing a novel means of detecting cell death rapidly.  相似文献   

19.
We evaluated novel fluorescent proteins (FPs) as reporters for gene transfer in animals and cells with the aim to develop more-sensitive assays for vector development and the optimization of gene transfer strategies in gene therapy. Adeno-associated virus serotype 5 vectors carrying an expression cassette with a chicken beta-actin promoter encoding the green FPs ZsGreen1, AcGFP1, hMGFP (with and without intron), and EGFP and the red FPs DsRed2 and TurboRFP were administered to mice at identical doses for each organ to target liver, lung, and muscle. Despite the fact that all FPs were expressed from an identical vector backbone, the observed number of fluorescent cells and fluorescence intensities varied between, but was consistent within, each combination of a specific protein and organ. The highest number of fluorescent cells was observed in liver with EGFP and in lung with ZsGreen1 and EGFP. In muscle, AcGFP1 and ZsGreen1 produced the most-intense fluorescence in fibers. In contrast, in culture cells, ZsGreen1 showed substantially stronger fluorescence than all other proteins. Our data demonstrate that each FP has tissue-specific expression profiles that need to be taken into consideration when comparing the performance of vectors in different organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号