首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.  相似文献   

2.
Lone S  Romano LJ 《Biochemistry》2003,42(13):3826-3834
The molecular mechanism that allows a polymerase to incorporate a nucleotide opposite a DNA lesion is not well-understood. One way to study this process is to characterize the altered molecular interactions that occur between the polymerase and a damaged template. Prior studies have determined the polymerase-template dissociation constants and used kinetic analyses and a protease digestion assay to measure the effect of various DNA adducts positioned in the active site of Klenow fragment (KF). Here, a mutator polymerase was used in which the tyrosine at position 766 of the KF has been replaced with a serine. This position is located at the junction of the fingers and palm domain and is thought to be involved in maintaining the active site geometry. The primer-template was modified with N-acetyl-2-aminofluorene (AAF), a well-studied carcinogenic adduct. The mutant polymerase displayed a significant increase in the rate of incorporation of the correct nucleotide opposite the adduct but was much less prone to incorporate an incorrect nucleotide relative to the wild-type polymerase. Both the wild-type and the mutant polymerase bound much more tightly to the AAF-modified primer-template; however, unlike the wild-type polymerase, the binding strength of the mutant was influenced by the presence of a dNTP. Moreover, the mutant polymerase was able to undergo a dNTP-induced conformational change when the AAF adduct was positioned in the active site, while the wild-type enzyme could not. A model is proposed in which the looser active site of the mutant is able to better accommodate the AAF adduct.  相似文献   

3.
Formation of DNA adducts in various tissues of dogs fed a single dose of the carcinogen 2-aminofluorene was investigated. Adduct analysis was performed using a technique that allows measurement of both N-(deoxyguanosin-8-yl)-2-amino-2-aminofluorene-DNA adduct formed by reaction of N-hydroxy-2-aminofluorene with DNA, as well as the polar 2-aminofluorene-DNA adducts formed when 2-aminofluorene is activated by prostaglandin H synthase-peroxidase in vitro. Two male beagle (A and B) dogs were examined and a different DNA adduct profile was observed with each dog. For the dog A, N-(deoxyguanosin-8-yl)-2-aminofluorene was the major adduct found in hepatic DNA; no peroxidase-derived adducts were detected in this tissue. In contrast, adducts eluting similarly to peroxidase-derived adducts were found in urinary tract tissues of this dog with the relative abundance of these adducts in the order urothelium greater than renal medulla greater than renal cortex, which correlates with the respective tissues' prostaglandin H synthase activity. N-(Deoxyguanosin-8-yl)-2-aminofluorene was detected in the renal tissues, but not in urothelium. For dog B, only the N-(deoxyguanosin-8-yl)-2-aminofluorene adduct was observed in all tissues examined, including the urothelium. However, total binding to liver, kidney, and bladder were two-, two-, and four-fold lower, respectively, than dog A. These data indicate that both prostaglandin H synthase-mediated activation and N-hydroxylation of 2-aminofluorene occur in vivo and may be subjected to pharmacodynamic considerations. Furthermore, the tissue distribution of the peroxidase-mediated 2-aminofluorene adducts suggests this process may also be of importance in the bladder-specific carcinogenicity of aromatic amines.  相似文献   

4.
Dzantiev L  Romano LJ 《Biochemistry》2000,39(17):5139-5145
The carcinogen N-acetyl-2-aminofluorene forms two major DNA adducts: the N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene adduct (dG-C8-AAF) and its deacetylated derivative, the N-(2'-deoxyguanosin-8-yl)-2-aminofluorene adduct (dG-C8-AF). It is well established that the AAF adduct is a very strong block for DNA synthesis in vitro while the AF adduct is more easily bypassed. In an effort to understand the molecular mechanism of this phenomenon, the structure of the complex of an exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment) bound to primer-templates containing either an AF or AAF adduct in or near the active site was probed by nuclease and protease digestion analyses. The results of these experiments suggest that positioning the AAF adduct in the polymerase active site strongly inhibits the conformational change that is required for the insertion of a nucleotide. Similar experiments with AF-modified primer-templates shows a much less pronounced effect. The inhibition of the conformational change by either adduct is not detected if they are positioned in the single-stranded part of the template just one nucleotide before the active site. These findings may explain the different abilities of these lesions to block DNA synthesis.  相似文献   

5.
Lone S  Romano LJ 《Biochemistry》2007,46(10):2599-2607
Understanding how carcinogenic DNA adducts compromise accurate DNA replication is an important goal in cancer research. A central part of these studies is to determine the molecular mechanism that allows a DNA polymerase to incorporate a nucleotide across from and past a bulky adduct in a DNA template. To address the importance of polymerase architecture on replication across from this type of bulky DNA adduct, three active-site mutants of Escherichia coli DNA polymerase I (Klenow fragment) were used to study DNA synthesis on DNA modified with the carcinogen N-2-aminofluorene (AF). Running-start synthesis studies showed that full-length synthesis past the AF adduct was inhibited for all of the mutants, but that this inhibition was substantially less for the F762A mutant. Single nucleotide extension and steady-state kinetic experiments showed that the Y766S mutant displayed higher rates of insertion of each incorrect nucleotide relative to WT across from the dG-AF adduct. This effect was not observed for F762A or E710A mutants. Similar experiments that measured synthesis one nucleotide past the dG-AF adduct revealed an enhanced preference by the F762A mutant for dG opposite the T at this position. Finally, synthesis at the +1 and +2 positions was inhibited to a greater extent for the Y766S and E710A mutants compared with both the WT and F762A mutants. Taken together, this work is consistent with the model that polymerase geometry plays a crucial role in both the insertion and extension steps during replication across from bulky DNA lesions.  相似文献   

6.
Human Y-family DNA polymerase kappa (polκ) is specialized to bypass bulky lesions in DNA in an error-free way, thus protecting cells from carcinogenic bulky DNA adducts. Benzo[a]pyrene (BP) is one of the most ubiquitous polycyclic aromatic hydrocarbons and an environmental carcinogen. BP covalently modifies DNA and generates mutagenic, bulky adducts. The major BP adduct formed in cells is 10S (+)-trans-anti-BP-N2-dG adduct (BP-dG), which is associated with cancer. The molecular mechanism of how polκ replicates BP-dG accurately is not clear. Here we report the structure of polκ captured at the lesion-extension stage: the enzyme is extending the primer strand after the base pair containing the BP-dG adduct in the template strand at the −1 position. Polκ accommodates the BP adduct in the nascent DNA’s minor groove and keeps the adducted DNA helix in a B-form. Two water molecules cover the edge of the minor groove of the replicating base pair (0 position), which is secured by the BP ring in the −1 position in a 5′ orientation. The 5′ oriented BP adduct keeps correct Watson-Crick base pairing in the active site and promotes high fidelity replication. Our structural and biochemical data reveal a unique molecular basis for accurate DNA replication right after the bulky lesion BP-dG.  相似文献   

7.
Two related carcinogen adducts, N-(deoxyguanosin-8-yl)-2-aminofluorene (AF) or N-(deoxyguanosin-8-yl)-N-acetyl-2-aminofluorene (AAF), were introduced into the lacZ' gene at base position 6253 of the minus strand of M13mp9 viral DNA. The construction of this site-specifically modified DNA was accomplished by first preparing a gapped heteroduplex missing 7 nucleotides at position 6251-6257 followed by ligation with an unmodified heptamer or with a heptamer containing either an AF or AAF adduct. These site-specifically modified templates were transfected into competent wild-type Escherichia coli cells (JM103) and a uvrA strain (SMH12). The mutation spectrum was determined by phenotypic selection of colorless plaques indicating a defective beta-galactosidase marker enzyme and by an in situ hybridization procedure to detect single base pair mismatches in the adduct region. DNA sequencing was used to characterize 179 of the mutants obtained. We found that both adducts were capable of inducing base substitution mutations at the adduct site and in the local region of the adduct. A specific frameshift (+1G) was also observed at a displaced site. All of the frameshift mutations occurred at the ligation site of the modified oligonucleotide. Control experiments with an unmodified oligonucleotide did not show an enhancement of mutations at this site, indicating that the adducts may have been responsible for these frameshifts. The mutations spectra induced by these adducts suggest that mutagenesis depends not only on adduct structure but also the sequence in which the adduct is located and the host cell type used for mutation expression.  相似文献   

8.
Zou Y  Shell SM  Utzat CD  Luo C  Yang Z  Geacintov NE  Basu AK 《Biochemistry》2003,42(43):12654-12661
DNA damage recognition of nucleotide excision repair (NER) in Escherichia coli is achieved by at least two steps. In the first step, a helical distortion is recognized, which leads to a strand opening at the lesion site. The second step involves the recognition of the type of chemical modification in the single-stranded region of DNA during the processing of the lesions by UvrABC. In the current work, by comparing the efficiencies of UvrABC incision of several types of different DNA adducts, we show that the size and position of the strand opening are dependent on the type of DNA adducts. Optimal incision efficiency for the C8-guanine adducts of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) was observed in a bubble of three mismatched nucleotides, whereas the same for C8-guanine adduct of 1-nitropyrene and N(2)-guanine adducts of benzo[a]pyrene diol epoxide (BPDE) was noted in a bubble of six mismatched nucleotides. This suggests that the size of the aromatic ring system of the adduct might influence the extent and number of bases associated with the opened strand region catalyzed by UvrABC. We also showed that the incision efficiency of the AF or AAF adduct was affected by the neighboring DNA sequence context, which, in turn, was the result of differential binding of UvrA to the substrates. The sequence context effect on both incision and binding disappeared when a bubble structure of three bases was introduced at the adduct site. We therefore propose that these effects relate to the initial step of damage recognition of DNA structural distortion. The structure-function relationships in the recognition of the DNA lesions, based on our results, have been discussed.  相似文献   

9.
The synthetic oligonucleotide heptamer 5'-ATCCGTC-3' was reacted in vitro with N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene and the resulting product isolated by reverse-phase high-performance liquid chromatography (HPLC). This purified oligonucleotide, which was shown by chemical and enzymatic analysis to be a heptamer containing a single N-(deoxyguanin-8-yl)-2-aminofluorene adduct, was then used to situate the putatively mutagenic aminofluorene lesion within the genome of M13 mp9 by ligating it into a complementary single-stranded region located at a specific site in the negative strand of the duplex M13 mp9 DNA molecule. The presence of the adduct at the anticipated location was confirmed by taking advantage of the facts that AF adducts inhibit many restriction enzymes when located in or near their restriction sites and that the AF moiety should be contained within the HincII recognition sequence on M13 mp9 DNA. Upon attempted cleavage of the M13 DNA containing the site-specific AF adduct with HincII, we find that the large majority of the DNA remained circular, demonstrating the incorporation of the AF adduct in high yield into the DNA molecule at this location. This system should prove useful in vivo for the study of mutagenesis by chemical carcinogens and in vitro to study the interaction of purified DNA metabolizing proteins with a template containing a site-specific lesion.  相似文献   

10.
Adduct-induced conformational heterogeneity complicates the understanding of how DNA adducts exert mutation. A case in point is the N-deacetylated AF lesion [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene], the major adduct derived from the strong liver carcinogen N-acetyl-2-aminofluorene. Three conformational families have been previously characterized and are dependent on the positioning of the aminofluorene rings: B is in the "B-DNA" major groove, S is "stacked" into the helix with base-displacement, and W is "wedged" into the minor groove. Here, we conducted (19)F NMR, CD, T(m), and modeling experiments at various primer positions with respect to a template modified by a fluorine tagged AF-adduct (FAF). In the first set, the FAF-G was paired with C and in the second set it was paired with A. The FAF-G:C oligonucleotides were found to preferentially adopt the B or S-conformers while the FAF-G:A mismatch ones preferred the B and W-conformers. The conformational preferences of both series were dependent on temperature and complementary strand length; the largest differences in conformation were displayed at lower temperatures. The CD and T(m) results are in general agreement with the NMR data. Molecular modeling indicated that the aminofluorene moiety in the minor groove of the W-conformer would impose a steric clash with the tight-packing amino acid residues on the DNA binding area of the Bacillus fragment (BF), a replicative DNA polymerase. In the case of the B-type conformer, the carcinogenic moiety resides in the solvent-exposed major groove throughout the replication/translocation process. The present dynamic NMR results, combined with previous primer extension kinetic data by Miller & Grollman, support a model in which adduct-induced conformational heterogeneities at positions remote from the replication fork affect polymerase function through a long-range DNA-protein interaction.  相似文献   

11.
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.  相似文献   

12.
Nucleotide excision repair plays a crucial role in removing many types of DNA adducts formed by UV light and chemical carcinogens. We have examined the interactions of Escherichia coli UvrABC nuclease proteins with three site-specific C8 guanine adducts formed by the carcinogens 2-aminofluorene (AF), N-acetyl-2-acetylaminofluorene (AAF) and 1-nitropyrene (1-NP) in a 50mer oligonucleotide. Similar to the AF and AAF adducts, the 1-NP-induced DNA adduct contains an aminopyrene (AP) moiety covalently linked to the C8 position of guanine. The dissociation constants for UvrA binding to AF–, AAF– and AP–DNA adducts, determined by gel mobility shift assay, are 33 ± 9, 8 ± 2 and 23 ± 9 nM, respectively, indicating that the AAF adduct is recognized much more efficiently than the other two. Incision by UvrABC nuclease showed that AAF–DNA was cleaved ~2-fold more efficiently than AF– or AP–DNA (AAF > AF ≈ AP), even though AP has the largest molecular size in this group. However, an opened DNA structure of six bases around the adduct increased the incision efficiency for AF–DNA (but not for AP–DNA), making it equivalent to that for AAF–DNA. These results are consistent with a model in which DNA damage recognition by the E.coli nucleotide excision repair system consists of two sequential steps. It includes recognition of helical distortion in duplex DNA followed by recognition of the type of nucleotide chemical modification in a single-stranded region. The difference in incision efficiency between AF– and AAF–DNA adducts in normal DNA sequence, therefore, is a consequence of their difference in inducing structural distortions in DNA. The results of this study are discussed in the light of NMR solution structures of these DNA adducts.  相似文献   

13.
The ability of Escherichia coli DNA polymerase I and T7 DNA polymerase to bypass bulky C-8 guanyl-2-aminofluorene adducts in DNA was studied by in vitro DNA synthesis reactions on a site-specific aminofluorene-modified M13mp9 template. This site-specifically modified DNA was prepared by ligating an oligonucleotide containing a single aminofluorene adduct into a gapped heteroduplex of M13mp9 DNA (Johnson, D. L., Reid, T. M., Lee, M.-S., King, C. M., and Romano, L. J. (1986) Biochemistry 25, 449-456). The resulting covalently closed duplex DNA molecule was then cleaved with a restriction endonuclease, denatured, and annealed to a primer on the 3' side of the adduct to form a template specifically designed to study bypass. In this system, any synthesis that was not blocked by the bulky aminofluorene adduct would proceed to the 5' terminus of the single-stranded template, while synthesis interrupted by the adduct would terminate at or near the adduct location. We have measured DNA synthesis on this template and find that the amount of radiolabeled nucleotide incorporated by either E. coli DNA polymerase I (large fragment) or T7 DNA polymerase was much greater than would be predicted if the aminofluorene adduct were an absolute block to DNA synthesis. Furthermore, the products of similar reactions electrophoresed on polyacrylamide gels showed conclusively that the majority of the DNA synthesized by either the T7 DNA polymerase or E. coli DNA polymerase I bypassed the aminofluorene lesion. Substitution of Mn2+ for Mg2+ as the divalent cation resulted in even higher levels of translesion synthesis.  相似文献   

14.
The technique of 32P postlabeling of DNA-carcinogen adducts is a useful and extremely sensitive method of detecting and quantitating DNA damage by carcinogens. We have adapted the 32P method to analysis by high-pressure liquid chromatography, making the procedure more rapid and convenient than when thin-layer chromatography is used. Following DNA isolation and hydrolysis, nucleotide-carcinogen adducts are enhanced relative to normal nucleotides by solvent extraction and then labeled with high-specific-activity [gamma-32P]ATP. The resulting 32P-postlabeled nucleotides are resolved by reverse-phase ion-pair HPLC. After as little as 3 h of exposure to carcinogens, DNA adducts can be demonstrated from 1 microgram or less of mouse hepatic DNA. Acetylated and nonacetylated adducts can be resolved from hepatic DNA of mice treated with 2-aminofluorene. Differences in DNA damage as measured by adduct formation were demonstrated between "rapid" and "slow" acetylator mouse strains. Rapid-acetylator C57BL/6J mice had three times the amount of hepatic DNA adducts as slow-acetylator A/J mice 3 h after a 60 mg/kg dose of 2-aminofluorene. 4-Aminobiphenyl and 2-naphthylamine each showed an adduct peak with retention time similar to that of the nonacetylated 2-aminofluorene adduct, while benzidine gave a major adduct that eluted somewhat earlier as would be expected for an acetylated adduct. The alkenylbenzenes, safrole and methyleugenol, also formed DNA adducts detectable by this method. DNA prepared from skin of mice painted with benzo[a]pyrene also contained carcinogen-DNA adducts detectable and resolvable by HPLC analysis following 32P postlabeling. The combination of HPLC with 32P postlabeling appears to be a useful technique for the rapid detection and quantitation of DNA damage caused by several classes of aromatic carcinogens.  相似文献   

15.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase eta (Poleta) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Poleta predominantly inserted an A opposite a template (+)- and (-)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Poleta. Error-prone nucleotide insertion by human Poleta was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (-)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Poleta largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Poleta from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5' to the lesion. By combining the nucleotide insertion activity of human Poleta and the extension synthesis activity of human Polkappa, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

16.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

17.
Using 32P-postlabelling and thin layer chromatography, DNA adduct formation by the potent animal carcinogen 2,4-diaminotoluene in Fischer-344 rats was investigated. DNA from four different organs, liver, mammary gland, kidney and lung, were examined for adducts following single administration of this compound. DNA binding was detected in all four organs, with each producing one major and two minor adduct spots on autoradiograms. The adducts induced were qualitatively identical among the different organs, but quantitative differences were observed. The two target organs of 2,4-diaminotoluene induced carcinogenesis, the liver and mammary gland produced higher adduct yields, with levels up to 30-times higher than those for the two non-target organs. Since the liver is the principal target for 2,4-diaminotoluene induced carcinogenesis, we further examined DNA adducts from this site for the effects of different doses and time points. DNA binding in liver was detected following doses as low as 4.1 mumol/kg. At the highest concentration examined (2046 mumol/kg), the level of the major adduct was 29.2 adducted nucleotides per 10(7) total nucleotides. The yields for the two minor adducts were approximately one-tenth that for the major adduct. Following a 410 mumol/kg dose, DNA adduct removal over time was examined. DNA adduct removal exhibited biphasic kinetics, with a rapid initial phase followed by a slower rate of elimination. Up to 60% of maximum adduct levels persisted after 2 weeks. DNA binding by 2,4-diaminotoluene was also compared to that by its weakly carcinogenic analog, 2,4-dinitrotoluene. The two compounds produced identical adduct patterns, suggesting that they share common metabolites and adducts. Adduct yields from 2,4-dinitrotoluene, however, were lower. The results of our studies suggest that the differences in carcinogenic potency between 2,4-diaminotoluene and 2,4-dinitrotoluene, as well as the organotropic effects of 2,4-diaminotoluene may be explained, in part, by quantitative differences in the extent of DNA adduct formation.  相似文献   

18.
Zhang Y  Wu X  Guo D  Rechkoblit O  Wang Z 《DNA Repair》2002,1(7):559-569
In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N(2)-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polkappa can effectively bypass a template (+)-trans-anti-BPDE-N(2)-dG adduct in an error-free manner. Kinetic parameters indicate that Polkappa bypass of the (-)-trans-anti-BPDE-N(2)-dG adduct was approximately 41-fold more efficient compared to the (+)-trans-anti-BPDE-N(2)-dG adduct. Furthermore, we have found another activity of human Polkappa in response to the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts: extension synthesis from mispaired primer 3' ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polbeta and the purified catalytic subunits of yeast Polalpha, Poldelta, and Pol epsilon right before the lesion. Extension by human Polkappa from the primer 3' G opposite the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polkappa prior to DNA synthesis. Thus, sequence contexts 5' to the lesion strongly affect the fidelity and mechanism of the Polkappa-catalyzed extension synthesis. These results support a dual-function model of human Polkappa in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.  相似文献   

19.
Guo D  Xie Z  Shen H  Zhao B  Wang Z 《Nucleic acids research》2004,32(3):1122-1130
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase ζ (Polζ) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polζ and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,N6-ethenoadenine adduct. Purified yeast Polζ was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polζ, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polζ-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polζ-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polζ at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polζ-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polζ is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polζ and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells.  相似文献   

20.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号