首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S-Palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.  相似文献   

3.
Inwardly rectifying potassium channel Kir4.1 is critical for glial function, control of neuronal excitability, and systemic K+ homeostasis. Novel mutations in Kir4.1 have been associated with EAST/SeSAME syndrome, characterized by mental retardation, ataxia, seizures, hearing loss, and renal salt waste. Patients are homozygous for R65P, G77R, C140R or T164I; or compound heterozygous for A167V/R297C or R65P/R199Stop, a deletion of the C-terminal half of the protein. We investigated the functional significance of these mutations by radiotracer efflux and inside-out membrane patch clamping in COSm6 cells expressing homomeric Kir4.1 or heteromeric Kir4.1/Kir5.1 channels. All of the mutations compromised channel function, but the underlying mechanisms were different. R65P, T164I, and R297C caused an alkaline shift in pH sensitivity, indicating that these positions are crucial for pH sensing and pore gating. In R297C, this was due to disruption of intersubunit salt bridge Glu288–Arg297. C140R breaks the Cys108–Cys140 disulfide bond essential for protein folding and function. A167V did not affect channel properties but may contribute to decreased surface expression in A167V/R297C. In G77R, introduction of a positive charge within the bilayer may affect channel structure or gating. R199Stop led to a dramatic decrease in surface expression, but channel activity was restored by co-expression with intact subunits, suggesting remarkable tolerance for truncation of the cytoplasmic domain. These results provide an explanation for the molecular defects that underlie the EAST/SeSAME syndrome.  相似文献   

4.
Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na(+),K(+),2Cl(-) cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP(-/-)) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (-49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-D-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-D-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP(-/-) mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.  相似文献   

5.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

6.
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. An emerging feature of several Kir channels is that they are regulated by cholesterol. However, the mechanism by which cholesterol affects channel function is unclear. Here we show that mutations of two distant Kir2.1 cytosolic residues, Leu-222 and Asn-251, form a two-way molecular switch that controls channel modulation by cholesterol and affects critical hydrogen bonding. Notably, these two residues are linked by a residue chain that continues from Asn-251 to connect adjacent subunits. Furthermore, our data indicate that the same switch also regulates the sensitivity of the channels to phosphatidylinositol 4,5-bisphosphate, a phosphoinositide that is required for activation of Kir channels. Thus, although cholesterol and phosphatidylinositol 4,5-bisphosphate do not interact with the same region of Kir2.1, these different modulators induce a common gating pathway of the channel.  相似文献   

7.
Large-conductance, calcium- and voltage-gated potassium (BK) channels play an important role in cellular excitability by controlling membrane potential and calcium influx. The stress axis regulated exon (STREX) at splice site 2 inverts BK channel regulation by protein kinase A (PKA) from stimulatory to inhibitory. Here we show that palmitoylation of STREX controls BK channel regulation also by protein kinase C (PKC). In contrast to the 50% decrease of maximal channel activity by PKC in the insertless (ZERO) splice variant, STREX channels were completely resistant to PKC. STREX channel mutants in which Ser(700), located between the two regulatory domains of K(+) conductance (RCK) immediately downstream of the STREX insert, was replaced by the phosphomimetic amino acid glutamate (S700E) showed a ~50% decrease in maximal channel activity, whereas the S700A mutant retained its normal activity. BK channel inhibition by PKC, however, was effectively established when the palmitoylation-mediated membrane-anchor of the STREX insert was removed by either pharmacological inhibition of palmitoyl transferases or site-directed mutagenesis. These findings suggest that STREX confers a conformation on BK channels where PKC fails to phosphorylate and to inhibit channel activity. Importantly, PKA which inhibits channel activity by disassembling the STREX insert from the plasma membrane, allows PKC to further suppress the channel gating independent from voltage and calcium. Our results present an important example for the cross-talk between ion channel palmitoylation and phosphorylation in regulation of cellular excitability.  相似文献   

8.
The K(ATP) channel is an important player in vascular tone regulation. Its opening and closure lead to vasodilation and vasoconstriction, respectively. Such functions may be disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrated that S-glutathionylation was a modulation mechanism underlying oxidant-mediated vascular K(ATP) channel regulation. An exposure of isolated mesenteric rings to hydrogen peroxide (H(2)O(2)) impaired the K(ATP) channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, H(2)O(2) or diamide caused a strong inhibition of the vascular K(ATP) channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH). Similar channel inhibition was seen with oxidized glutathione (GSSG) and thiol-modulating reagents. The oxidant-mediated channel inhibition was reversed by the reducing agent dithiothreitol (DTT) and the specific deglutathionylation reagent glutaredoxin-1 (Grx1). Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester (BioGEE) showed incorporation of GSH to the Kir6.1 subunit in the presence of H(2)O(2). These results suggest that S-glutathionylation is an important mechanism for the vascular K(ATP) channel modulation in oxidative stress.  相似文献   

9.
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.  相似文献   

10.
11.
Cyclic AMP-dependent phosphorylation of the rat brain sodium channel was reported to be restricted to five sites within an approximately 210 amino acid region of the primary sequence that is deleted in the homologous sodium channel from rat skeletal muscle. We find that, in spite of this deletion, the rat muscle sodium channel alpha-subunit is also an excellent substrate for phosphorylation by this kinase both in primary muscle cells in tissue culture and in vitro after isolation from adult muscle. Sodium channel protein purified from adult rat skeletal muscle was readily phosphorylated in vitro by the catalytic subunit of the bovine cyclic AMP-dependent protein kinase (PKa). Only the 260,000 MW alpha-subunit was labeled, with a maximum level of incorporation in vitro of approximately 0.5 mol [32P]phosphate per mole of channel protein. The beta-subunit of the channel is not phosphorylated under these conditions. In primary rat skeletal muscle cells in culture, incorporation of phosphate into the channel alpha-subunit is stimulated 1.3- to 1.5-fold by treatment of the cells with forskolin. Phosphorylation of the sodium channel isolated from these cells could also be demonstrated in vitro using PKa. This in vitro phosphorylation could be inhibited 80-90% by pretreatment of the cells in culture with forskolin, suggesting that the sites labeled in vitro by PKa were the same as those phosphorylated in the intact cells by the endogenous cyclic AMP-dependent kinase. In both the adult muscle channel and the channel from muscle cells in culture, phosphorylation by PKa was limited to serine residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.  相似文献   

13.
The tandem pore domain halothane-inhibited K+ channel 1 (THIK1) produces background K+ currents. Despite 62% amino acid identity with THIK1, THIK2 is not active upon heterologous expression. Here, we show that this apparent lack of activity is due to a unique combination of retention in the endoplasmic reticulum and low intrinsic channel activity at the plasma membrane. A THIK2 mutant containing a proline residue (THIK2-A155P) in its second inner helix (M2) produces K+-selective currents with properties similar to THIK1, including inhibition by halothane and insensitivity to extracellular pH variations. Another mutation in the M2 helix (I158D) further increases channel activity and affects current kinetics. We also show that the cytoplasmic amino-terminal region of THIK2 (Nt-THIK2) contains an arginine-rich motif (RRSRRR) that acts as a retention/retrieval signal. Mutation of this motif in THIK2 induces a relocation of the channel to the plasma membrane, resulting in measurable currents, even in the absence of mutations in the M2 helix. Cell surface delivery of a Nt-THIK2-CD161 chimera is increased by mutating the arginines of the retention motif but also by converting the serine embedded in this motif to aspartate, suggesting a phosphorylation-dependent regulation of THIK2 trafficking.  相似文献   

14.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   

15.
Voltage-gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Agents that activate NADPH oxidase also enhance proton channel gating profoundly, facilitating its roles in charge compensation and pHi regulation. The “enhanced gating mode” appears to reflect protein kinase C (PKC) phosphorylation. Here we examine two candidates for PKC-δ phosphorylation sites in the human voltage-gated proton channel, HV1 (Hvcn1), Thr29 and Ser97, both in the intracellular N terminus. Channel phosphorylation was reduced in single mutants S97A or T29A, and further in the double mutant T29A/S97A, by an in vitro kinase assay with PKC-δ. Enhanced gating was evaluated by expressing wild-type (WT) or mutant HV1 channels in LK35.2 cells, a B cell hybridoma. Stimulation by phorbol myristate acetate enhanced WT channel gating, and this effect was reversed by treatment with the PKC inhibitor GF109203X. The single mutant T29A or double mutant T29A/S97A failed to respond to phorbol myristate acetate or GF109203X. In contrast, the S97A mutant responded like cells transfected with WT HV1. We conclude that under these conditions, direct phosphorylation of the proton channel molecule at Thr29 is primarily responsible for the enhancement of proton channel gating. This phosphorylation is crucial to activation of the proton conductance during the respiratory burst in phagocytes.  相似文献   

16.
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.  相似文献   

17.
Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant.  相似文献   

18.
Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to cystic fibrosis, but the regulation of CFTR is not fully understood. Here, we identified the intermediate filament protein keratin K18 (K18) as a CFTR-binding protein by various approaches. We mapped a highly conserved “hydrophobic patch” (1413FLVI1416) in the CFTR C-terminus, known to determine plasmalemmal CFTR stability, as the K18-binding site. On the other hand, the C-terminal tail of K18 was found to be a critical determinant for binding CFTR. Overexpression of K18 in cells robustly increased the surface expression of wild-type CFTR, whereas depletion of K18 through RNA interference specifically diminished it. K18 binding increased the surface expression of CFTR by accelerating its apical recycling rate without altering CFTR biosynthesis, maturation, or internalization. Importantly, CFTR surface expression was markedly reduced in duodenal and gallbladder epithelia of K18−/− mice. Taken together, our results suggest that K18 increases the cell surface expression of CFTR by interacting with the CFTR C-terminal hydrophobic patch. These findings offer novel insights into the regulation of CFTR and suggest that K18 and its dimerization partner, K8, may be modifier genes in cystic fibrosis.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel mutations cause cystic fibrosis lung disease. A better understanding of CFTR regulatory mechanisms could suggest new therapeutic strategies. AMP-activated protein kinase (AMPK) binds to and phosphorylates CFTR, attenuating PKA-activated CFTR gating. However, the requirement for AMPK binding to CFTR and the potential role of other proteins in this regulation are unclear. We report that nucleoside diphosphate kinase A (NDPK-A) interacts with both AMPK and CFTR in overlay blots of airway epithelial cell lysates. Binding studies in Xenopus oocytes and transfected HEK-293 cells revealed that a CFTR peptide fragment that binds AMPK (CFTR-1420-57) disrupted the AMPK-CFTR interaction. Introduction of CFTR-1420-57 into human bronchial Calu-3 cells enhanced forskolin-stimulated whole cell conductance in patch clamp measurements. Similarly, injection of CFTR-1420-57 into Xenopus oocytes blocked the inhibition of cAMP-stimulated CFTR conductance by AMPK in two-electrode voltage clamp studies. AMPK also inhibited CFTR conductance with co-expression of WT NDPK-A in two-electrode voltage clamp studies, but co-expression of a catalytically inactive H118F mutant or various Ser-120 NDPK-A mutants prevented this inhibition. In vitro phosphorylation of WT NDPK-A was enhanced by purified active AMPK, but phosphorylation was prevented in H118F and phosphomimic Ser-120 NDPK-A mutants. AMPK does not appear to phosphorylate NDPK-A directly but rather promotes an NDPK-A autophosphorylation event that involves His-118 and Ser-120. Taken together, these results suggest that NDPK-A exists in a functional cellular complex with AMPK and CFTR in airway epithelia, and NDPK-A catalytic function is required for the AMPK-dependent regulation of CFTR.  相似文献   

20.
Protein palmitoylation is a major dynamic posttranslational regulator of protein function. However, mechanisms that control palmitoylation are poorly understood. In many proteins, palmitoylation occurs at cysteine residues juxtaposed to membrane-anchoring domains such as transmembrane helices, sites of irreversible lipid modification, or hydrophobic and/or polybasic domains. In particular, polybasic domains represent an attractive mechanism to dynamically control protein palmitoylation, as the function of these domains can be dramatically influenced by protein phosphorylation. Here we demonstrate that a polybasic domain immediately upstream of palmitoylated cysteine residues within an alternatively spliced insert in the C terminus of the large conductance calcium- and voltage-activated potassium channel is an important determinant of channel palmitoylation and function. Mutation of basic amino acids to acidic residues within the polybasic domain results in inhibition of channel palmitoylation and a significant right-shift in channel half maximal voltage for activation. Importantly, protein kinase A-dependent phosphorylation of a single serine residue within the core of the polybasic domain, which results in channel inhibition, also reduces channel palmitoylation. These data demonstrate the key role of the polybasic domain in controlling stress-regulated exon palmitoylation and suggests that phosphorylation controls the domain by acting as an electrostatic switch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号