首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport.  相似文献   

2.
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction—rather than reverse direction—after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein’s but not kinesin’s detachment time in vivo increases with opposing load. This suggests that dynein’s interaction with microtubules behaves like a catch bond.  相似文献   

3.
There is significant interest in quantifying force production inside cells, but since conditions in vivo are less well controlled than those in vitro, in vivo measurements are challenging. In particular, the in vivo environment may vary locally as far as its optical properties, and the organelles manipulated by the optical trap frequently vary in size and shape. Several methods have been proposed to overcome these difficulties. We evaluate the relative merits of these methods and directly compare two of them, a refractive index matching method, and a light-momentum-change method. Since in vivo forces are frequently relatively high (e.g., can exceed 15 pN for lipid droplets), a high-power laser is employed. We discover that this high-powered trap induces local temperature changes, and we develop an approach to compensate for uncertainties in the magnitude of applied force due to such temperature variations.  相似文献   

4.
Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins.  相似文献   

5.
Cellular cargoes, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies focused on cargoes with rigidly attached motors, in contrast to many biological cargoes that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical three-dimensional computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargoes with clustered motors are transported efficiently but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly but are transported inefficiently. Finally, cargoes with freely diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport.  相似文献   

6.
A subfamily of rhodopsin pigments was recently discovered in bacteria and proposed to function as dual-function light-driven H+/Na+ pumps, ejecting sodium ions from cells in the presence of sodium and protons in its absence. This proposal was based primarily on light-induced proton flux measurements in suspensions of Escherichia coli cells expressing the pigments. However, because E. coli cells contain numerous proteins that mediate proton fluxes, indirect effects on proton movements involving endogenous bioenergetics components could not be excluded. Therefore, an in vitro system consisting of the purified pigment in the absence of other proteins was needed to assign the putative Na+ and H+ transport definitively. We expressed IAR, an uncharacterized member from Indibacter alkaliphilus in E. coli cell suspensions, and observed similar ion fluxes as reported for KR2 from Dokdonia eikasta. We purified and reconstituted IAR into large unilamellar vesicles (LUVs), and demonstrated the proton flux criteria of light-dependent electrogenic Na+ pumping activity in vitro, namely, light-induced passive proton flux enhanced by protonophore. The proton flux was out of the LUV lumen, increasing lumenal pH. In contrast, illumination of the LUVs in a Na+-free suspension medium caused a decrease of lumenal pH, eliminated by protonophore. These results meet the criteria for electrogenic Na+ transport and electrogenic H+ transport, respectively, in the presence and absence of Na+. The direction of proton fluxes indicated that IAR was inserted inside-out into our sealed LUV system, which we confirmed by site-directed spin-label electron paramagnetic resonance spectroscopy. We further demonstrate that Na+ transport by IAR requires Na+ only on the cytoplasmic side of the protein. The in vitro LUV system proves that the dual light-driven H+/Na+ pumping function of IAR is intrinsic to the single rhodopsin protein and enables study of the transport activities without perturbation by bioenergetics ion fluxes encountered in vivo.  相似文献   

7.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.  相似文献   

8.
There is significant interest in quantifying force production inside cells, but since conditions in vivo are less well controlled than those in vitro, in vivo measurements are challenging. In particular, the in vivo environment may vary locally as far as its optical properties, and the organelles manipulated by the optical trap frequently vary in size and shape. Several methods have been proposed to overcome these difficulties. We evaluate the relative merits of these methods and directly compare two of them, a refractive index matching method, and a light-momentum-change method. Since in vivo forces are frequently relatively high (e.g., can exceed 15 pN for lipid droplets), a high-power laser is employed. We discover that this high-powered trap induces local temperature changes, and we develop an approach to compensate for uncertainties in the magnitude of applied force due to such temperature variations.  相似文献   

9.
Many cargoes move bidirectionally, frequently reversing course between plus- and minus-end microtubule travel. For such cargoes, the extent and importance of interactions between the opposite-polarity motors is unknown. In this paper we test whether opposite-polarity motors on lipid droplets in Drosophila embryos are coordinated and avoid interfering with each other's activity, or whether they engage in a tug of war. To this end we impaired the minus-end transport machinery using dynein and dynactin mutations, and then investigated whether plus-end motion was improved or disrupted. We observe a surprisingly severe impairment of plus-end motion due to these alterations of minus-end motor activity. These observations are consistent with a coordination hypothesis, but cannot be easily explained with a tug of war model. Our measurements indicate that dynactin plays a crucial role in the coordination of plus- and minus-end-directed motors. Specifically, we propose that dynactin enables dynein to participate efficiently in bidirectional transport, increasing its ability to stay "on" during minus-end motion and keeping it "off" during plus-end motion.  相似文献   

10.
11.
Molecular motors and mechanisms of directional transport in neurons   总被引:1,自引:0,他引:1  
Intracellular transport is fundamental for neuronal morphogenesis, function and survival. Many proteins are selectively transported to either axons or dendrites. In addition, some specific mRNAs are transported to dendrites for local translation. Proteins of the kinesin superfamily participate in selective transport by using adaptor or scaffolding proteins to recognize and bind cargoes. The molecular components of RNA-transporting granules have been identified, and it is becoming clear how cargoes are directed to axons and dendrites by kinesin superfamily proteins. Here we discuss the molecular mechanisms of directional axonal and dendritic transport with specific emphasis on the role of motor proteins and their mechanisms of cargo recognition.  相似文献   

12.
The signaling and transport systems of eucaryotic cells are tightly interconnected: intracellular transport along microtubules and microfilaments is required to position signaling-pathway components, while signaling molecules control activity of motor proteins and their interaction with tracks and cargoes. Recent data, however, give evidence that active transport is engaged in signaling as a means of signal transduction. This review focuses on this specific aspect of the interaction of two systems.  相似文献   

13.
Within axons vital cargoes must be transported over great distances along microtubule tracks to maintain neuronal viability. Essential to this system are the molecular motors, kinesin and dynein, which transport a variety of neuronal cargoes. Elucidating the transport pathways, the identity of the cargoes transported, and the regulation of motor-cargo complexes are areas of intense investigation. Evidence suggests that essential components, including signaling proteins, neuroprotective and repair molecules, and vesicular and cytoskeletal components are all transported. In addition newly emerging data indicate that defects in axonal transport pathways may contribute to the initiation or progression of chronic neuronal dysfunction. In this review we concentrate on microtubule-based motor proteins, their linkers, and cargoes and discuss how factors in the axonal transport pathway contribute to disease states. As additional cargo complexes and transport pathways are identified, an understanding of the role these pathways play in the development of human disease will hopefully lead to new diagnostic and treatment strategies.  相似文献   

14.
Highly polarized neurons need to carefully regulate the distribution of organelles and other cargoes into their two morphologically and functionally distinct domains, the somatodendritic and axonal compartments, to maintain proper neuron homeostasis. An outstanding question in the field is how organelles reach their correct destination. Long-range transport along microtubules, driven by motors, ensures a fast and controlled availability of organelles in axons and dendrites, but it remains largely unclear what rules govern their transport into the correct compartment. Here, we review the emerging concepts of polarized cargo trafficking in neurons, highlighting the role of microtubule organization, microtubule-associated proteins, and motor proteins and discuss compartment-specific inclusion and exclusion mechanisms as well as the regulation of correct coupling of cargoes to motor proteins.  相似文献   

15.
Kinesin superfamily proteins and their various functions and dynamics   总被引:7,自引:0,他引:7  
Kinesin superfamily proteins (KIFs) are motor proteins that transport membranous organelles and macromolecules fundamental for cellular functions along microtubules. Their roles in transport in axons and dendrites have been studied extensively, but KIFs are also used in intracellular transport in general. Recent findings have revealed that in many cases, the specific interaction of cargoes and motors is mediated via adaptor/scaffolding proteins. Cargoes are sorted to precise destinations, such as axons or dendrites. KIFs also participate in polarized transport in epithelial cells as shown in the apical transport of annexin XIIIb-containing vesicles by KIFC3. KIFs play important roles in higher order neuronal activity; transgenic mice overexpressing KIF17, which transports N-methyl-d-asp (NMDA) receptors to dendrites, show enhanced memory and learning. KIFs also play significant roles in neuronal development and brain wiring: KIF2A suppresses elongation of axon collaterals by its unique microtubule-depolymerizing activity. X-ray crystallography has revealed the structural uniqueness of KIF2 underlying the microtubule-depolymerizing activity. In addition, single molecule biophysics and optical trapping have shown that the motility of monomeric KIF1A is caused by biased Brownian movement, and X-ray crystallography has shown how the conformational changes occur for KIF1A to move during ATP hydrolysis. These multiple approaches in analyzing KIF functions will illuminate many basic mechanisms underlying intracellular events and will be a very promising and fruitful area for future studies.  相似文献   

16.
Microtubule-based transport in cells is powered by a small set of distinct motors, yet timing and destination of transport can be controlled in a cargo-specific manner. The mechanistic basis for this specificity is not understood. To address this question, we analyzed the Drosophila Klarsicht (Klar) protein that regulates distinct microtubule-based transport processes. We find that localization of Klar to its cargoes is crucial for Klar function. Using mutations, we identify functionally important regions of Klar that confer distinct cargo specificity. In ovaries, Klar is present on the nuclear envelope, a localization that requires the C-terminal KASH domain. In early embryos, Klar is attached to lipid droplets, a localization mediated by a novel C-terminal domain encoded by an alternatively spliced exon. In cultured cells, these two domains are sufficient for targeting to the correct intracellular location. Our analysis disentangles Klar's modular organization: we propose that a core region integral to motor regulation is attached to variable domains so that the cell can target regulators with overlapping, yet distinct functions to specific cargoes. Such isoform variation may be a general strategy for adapting a common regulatory mechanism to specifically control motion and positioning of multiple organelles.  相似文献   

17.
Neurons rely on microtubule (MT) motor proteins such as kinesin‐1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK‐3) has been proposed to be a central player in AD and to regulate axonal transport by the MT motor protein kinesin‐1. Using genetic, biochemical and biophysical approaches in Drosophila melanogaster, we find that endogenous GSK‐3 is a required negative regulator of both kinesin‐1‐mediated and dynein‐mediated axonal transport of the amyloid precursor protein (APP), a key contributor to AD pathology. GSK‐3 also regulates transport of an unrelated cargo, embryonic lipid droplets. By measuring the forces motors generate in vivo, we find that GSK‐3 regulates transport by altering the activity of kinesin‐1 motors but not their binding to the cargo. These findings reveal a new relationship between GSK‐3 and APP, and demonstrate that endogenous GSK‐3 is an essential in vivo regulator of bidirectional APP transport in axons and lipid droplets in embryos. Furthermore, they point to a new regulatory mechanism in which GSK‐3 controls the number of active motors that are moving a cargo .  相似文献   

18.
In canonical microtubule-based transport, adaptor proteins link cargoes to dynein and kinesin motors. Recently, an alternative mode of transport known as “hitchhiking” was discovered, where cargoes achieve motility by hitching a ride on already-motile cargoes, rather than attaching to a motor protein. Hitchhiking has been best studied in two filamentous fungi, Aspergillus nidulans and Ustilago maydis. In U. maydis, ribonucleoprotein complexes, peroxisomes, lipid droplets (LDs), and endoplasmic reticulum hitchhike on early endosomes (EEs). In A. nidulans, peroxisomes hitchhike using a putative molecular linker, peroxisome distribution mutant A (PxdA), which associates with EEs. However, whether other organelles use PxdA to hitchhike on EEs is unclear, as are the molecular mechanisms that regulate hitchhiking. Here we find that the proper distribution of LDs, mitochondria, and preautophagosomes do not require PxdA, suggesting that PxdA is a peroxisome-specific molecular linker. We identify two new pxdA alleles, including a point mutation (R2044P) that disrupts PxdA’s ability to associate with EEs and reduces peroxisome movement. We also identify a novel regulator of peroxisome hitchhiking, the phosphatase DipA. DipA colocalizes with EEs and its association with EEs relies on PxdA. Together, our data suggest that PxdA and the DipA phosphatase are specific regulators of peroxisome hitchhiking on EEs.  相似文献   

19.
Spontaneous postsynaptic currents (PSCs) provide key information about the mechanisms of synaptic transmission and the activity modes of neuronal networks. However, detecting spontaneous PSCs in vitro and in vivo has been challenging, because of the small amplitude, the variable kinetics, and the undefined time of generation of these events. Here, we describe a, to our knowledge, new method for detecting spontaneous synaptic events by deconvolution, using a template that approximates the average time course of spontaneous PSCs. A recorded PSC trace is deconvolved from the template, resulting in a series of delta-like functions. The maxima of these delta-like events are reliably detected, revealing the precise onset times of the spontaneous PSCs. Among all detection methods, the deconvolution-based method has a unique temporal resolution, allowing the detection of individual events in high-frequency bursts. Furthermore, the deconvolution-based method has a high amplitude resolution, because deconvolution can substantially increase the signal/noise ratio. When tested against previously published methods using experimental data, the deconvolution-based method was superior for spontaneous PSCs recorded in vivo. Using the high-resolution deconvolution-based detection algorithm, we show that the frequency of spontaneous excitatory postsynaptic currents in dentate gyrus granule cells is 4.5 times higher in vivo than in vitro.  相似文献   

20.
In vitro, single-molecule motility assays allow for the direct characterization of molecular motor properties including stepping velocity and characteristic run length. Although application of these techniques in vivo is feasible, the challenges involved in sample preparation, as well as the added complexity of the cell and its systems, result in a reduced ability to collect large datasets, as well as difficulty in simultaneous observation of the components of the motility system, namely motor and track. To address these challenges, we have developed simulations to characterize motility datasets as a function of sample size, processive run length of the motor, and distribution of track lengths. We introduce the use of a simple bootstrapping technique that allows for the quantification of measurement uncertainty and a Monte Carlo permutation resampling scheme for the measurement of statistical significance and the estimation of required sample size. In addition, we have found that, despite conventional wisdom, the measured characteristic run length is directly coupled to the characteristic track length that describes the microtubule length distribution. To be able to make comparisons between motility experiments performed on different track populations as well as make measurements of motility when motors and tracks cannot be simultaneously resolved, we have developed a theoretical framework for the determination of the effect that track length has on observed characteristic run lengths. This shows good agreement with in vitro motility experiments on two kinesin constructs walking on microtubule populations of different characteristic track lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号